Jiakun Dan
China Academy of Engineering Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiakun Dan.
Physics of Plasmas | 2015
Xianbin Huang; Shaotong Zhou; Jiakun Dan; Xiao-dong Ren; Kun-lun Wang; Siqun Zhang; Jing Li; Qiang Xu; Hongchun Cai; Shuchao Duan; Kai Ouyang; Guang-Hua Chen; Ce Ji; Bing Wei; Shuping Feng; Meng Wang; Weiping Xie; Jianjun Deng; Xiu-Wen Zhou; Yi Yang
The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%–90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132–300 tungsten wires with 5–10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (∼50 TW) and total radiated energy (∼500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.
Review of Scientific Instruments | 2015
Kun-lun Wang; Xiao-dong Ren; Xianbin Huang; Siqun Zhang; Shaotong Zhou; Jiakun Dan; Jing Li; Qiang Xu; Kai Ouyang; Hongchun Cai; Bing Wei; Ce Ji; Shuping Feng; Meng Wang; Weiping Xie; Jianjun Deng
Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.
Review of Scientific Instruments | 2016
Qingguo Yang; Dongbing Liu; Jian Mu; Xianbin Huang; Jiakun Dan; Xudong Xie; Wu Deng; Shuping Feng; Meng Wang; Yan Ye; Qixian Peng; Zeren Li
The x-ray backlighting systems, including a 1.865 keV (Si Heα line) spherically bent crystal imaging system and an ∼8.3 keV (Cu Heα line) point-projection imaging system, newly fielded on the Primary Test Stand facility are introduced and its preliminary experimental results in radiography of the aluminium (Al) liners with seeded sinusoidal perturbations are presented. The x-ray backlighter source is created using a 1 TW, 1 kJ Nd: glass high power laser, kilo-joule laser system, recently constructed at China Academy of Engineering Physics. The ablation melt and instability of the imploding Al liner outer edge under the driving current of ∼7.5 MA are successfully observed using these two backlighting systems, respectively.
Physics of Plasmas | 2018
Wenkang Zou; Jiakun Dan; Guilin Wang; Shuchao Duan; Bing Wei; Hengdi Zhang; Xianbin Huang; Zhaohui Zhang; Fan Guo; Boyi Gong; Lin Chen; Meng Wang; Shuping Feng; Weiping Xie; Jianjun Deng
Surface evolution for a conductor electrode under pulsed megagauss (MG) magnetic field was investigated. Stainless steel rods with 3 mm diameter were driven by 8 MA, 130 ns (10%–90%) current pulse in a series of shots on the Primary Test Stand. Experimental data from two complementary diagnostic systems and simulation results from one-dimensional magneto-hydrodynamics code reveal a transition phase for instability development. The transition, which begins as the conductor surface starts to expand, lasts about 40 ns in the pulse. It ends after the thermal plasma is formed, and striation electrothermal instability growth stops but magneto-Rayleigh-Taylor instability (MRTI) starts to develop. An expanding velocity which grows to about 2.0 km/s during the transition phase was directly measured for the first time. The threshold magnetic field for thermal plasma formation on the stainless steel surface was inferred to be 3.3 MG under a rising rate of about 66 MG/μs, and after that MRTI becomes predominant for a...
Physics of Plasmas | 2017
Qiang Xu; Jiakun Dan; Guilin Wang; Shuai Guo; Siqun Zhang; Hongchun Cai; Xiao Ren; Kun-lun Wang; Shaotong Zhou; Zhaohui Zhang; Xianbin Huang
We report on experiments in which a magnetically driven plasma jet was used to hit a 500 μm thick planar aluminum target. The plasma jet was produced by using a 50 μm thick aluminum radial foil, which was subjected to 4 MA, 90 ns rising time current on the primary test stand pulsed power facility. The subsequent magnetic bubbles propagate with radial velocity reaching 200 km/s and an axial velocity of 230 km/s. After the plasma knocks onto the target, a shock forms in the target. When the shock gets to the backside of the target, we measure the velocity of the moving surface using dual laser heterodyne velocimetry. By using the Hugoniot relations, we know that the plasma jet produced a pressure of 33 GPa. According to the measured pressure and the velocity of the plasma jet, the density of the jet can be also roughly estimated.
international conference on plasma science | 2015
Jing Li; Xianbin Huang; Hongchun Cai; Shuchao Duan; Siqun Zhang; Xiao-dong Ren; Kun-lun Wang; Jiakun Dan; Shaotong Zhou; Qiang Xu; Ce Ji; Shuping Feng; Meng Wang; Weiping Xie; Jianjun Deng
Summary form only given. The strong X-ray radiations produced by mega-ampere-current-level fast Z-pinch plasmas offer valuable and indispensible opportunities to create hot and dense radiation-heated plasmas1, serving the laboratory investigations of radiation sciences in the fields of opacity measurements, photon-ionized plasmas and so on. Recently, experiments of x-ray heating aluminum foil has been designed and is being carried out at the Primary Test Stand (PTS) facility2, a 8-10 MA, 70 ns pulsed power driver being able to generate x-ray bursts of 80 TW peak power and 3-5 ns FWHM3. In this paper, we present the simulation results of the aluminum foils heated by x-rays using a 1D radiation hydrodynamic code, the design of the sample foils with CH coatings on each side and the diagnostic results of x-ray power and energy in different spectral regions, transmission spectra through the foils and so on. By analyzing the measurements, the states and properties of the radiation-heated aluminum plasmas are estimated and discussed.
Physics of Plasmas | 2015
Qiang Xu; Xiao-dong Ren; Jing Li; Jiakun Dan; Kun-lun Wang; Shaotong Zhou
Supersonic radiation diffusion approximation is an useful method to study the radiation transportation. Considering the 2-d Marshak theory, and an invariable source temperature, conditions for supersonic radiation diffusion are proved to be coincident with that for radiant flux domination in the early time when exf/L≪1. However, they are even tighter than conditions for radiant flux domination in the late time when exf/L≫1, and can be expressed as M>4(1+e/3)/3 and τ>1. A large Mach number requires the high temperature, while the large optical depth requires the low temperature. Only when the source temperature is in a proper region the supersonic diffusion conditions can be satisfied. Assuming a power-low (in temperature and density) opacity and internal energy, for a given density, the supersonic diffusion regions are given theoretically. The 2-d Marshak theory is proved to be able to bound the supersonic diffusion conditions in both high and low temperature regions, however, the 1-d theory only bounds i...
Physics of Plasmas | 2014
Jiakun Dan; Xiao-dong Ren; Xianbin Huang; Kai Ouyang; Guang-Hua Chen
The influences of magnetic fluctuations on quasiperiodic structure formation and fundamental wavelength selection of the instability have been studied using two 25-μm-diameter tungsten wires on a 100 ns rise time, 220 kA pulsed power facility. Two different load configurations were adopted to make end surfaces of electrodes approximately satisfy reflecting and absorbing boundary conditions, respectively. The experimental results that the fundamental wavelength in the case of absorbing boundary condition is about one half of that in the case of reflecting boundary condition have demonstrated that magnetic fluctuations appear to play a key role in mode selection of magnetically driven instabilities. The dominant wavelength should be proportional to magnetic field and inversely proportional to square root of mass density, provided that the magnetosonic wave propagating perpendicular to magnetic fields provides a leading candidate for magnetic fluctuations. Therefore, magnetic fluctuation is one of the three key perturbations, along with surface contaminants and surface roughness, that seeds magnetically driven instabilities.
international conference on plasma science | 2013
Xianbin Huang; Siqun Zhang; Shaotong Zhou; Xiao-dong Ren; Hongchun Cai; Jiakun Dan; Shuchao Duan; Kai Ouyang
Summary form only given. An extensive diagnostics with spatial and temporal resolution for Z-pinch was developed on the PTS facility at Key Labora tory of Pulsed Power, CAEP. PTS facility can generate a curr ent rising to 8-10 MA in 90 ns, which was used to drive wire array Z pinches. Diagnostics including soft X-ray power meter, DANTE, transmission grating spectrometer, time-resolved X-ray pinhole camera, optical/X-ray streak cameras, X-ray crystal spectrometer, laser differential interferometer and some experimental results are described in this paper.
Matter and Radiation at Extremes | 2016
Jianjun Deng; Weiping Xie; Shuping Feng; Meng Wang; Hongtao Li; Shengyi Song; Minghe Xia; Ji Ce; An He; Qing Tian; Yuanchao Gu; Yongchao Guan; Bin Wei; Xianbin Huang; Xiao-dong Ren; Jiakun Dan; Jing Li; Shaotong Zhou; Hongchun Cai; Siqun Zhang; Kun-lun Wang; Qiang Xu; Yujuan Wang; Zhaohui Zhang; Guilin Wang; Shuai Guo; Yi He; Yiwei Zhou; Zhanji Zhang; Libing Yang