Jiali Zhuang
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiali Zhuang.
Genome Research | 2012
Jie Wang; Jiali Zhuang; Sowmya Iyer; XinYing Lin; Troy W. Whitfield; Melissa C. Greven; Brian G. Pierce; Xianjun Dong; Anshul Kundaje; Yong Cheng; Oliver J. Rando; Ewan Birney; Richard M. Myers; William Stafford Noble; Michael Snyder; Zhiping Weng
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become the dominant technique for mapping transcription factor (TF) binding regions genome-wide. We performed an integrative analysis centered around 457 ChIP-seq data sets on 119 human TFs generated by the ENCODE Consortium. We identified highly enriched sequence motifs in most data sets, revealing new motifs and validating known ones. The motif sites (TF binding sites) are highly conserved evolutionarily and show distinct footprints upon DNase I digestion. We frequently detected secondary motifs in addition to the canonical motifs of the TFs, indicating tethered binding and cobinding between multiple TFs. We observed significant position and orientation preferences between many cobinding TFs. Genes specifically expressed in a cell line are often associated with a greater occurrence of nearby TF binding in that cell line. We observed cell-line-specific secondary motifs that mediate the binding of the histone deacetylase HDAC2 and the enhancer-binding protein EP300. TF binding sites are located in GC-rich, nucleosome-depleted, and DNase I sensitive regions, flanked by well-positioned nucleosomes, and many of these features show cell type specificity. The GC-richness may be beneficial for regulating TF binding because, when unoccupied by a TF, these regions are occupied by nucleosomes in vivo. We present the results of our analysis in a TF-centric web repository Factorbook (http://factorbook.org) and will continually update this repository as more ENCODE data are generated.
Nucleic Acids Research | 2013
Jie Wang; Jiali Zhuang; Sowmya Iyer; XinYing Lin; Melissa C. Greven; Bong-Hyun Kim; Jill Moore; Brian G. Pierce; Xianjun Dong; Daniel Virgil; Ewan Birney; Jui-Hung Hung; Zhiping Weng
The Encyclopedia of DNA Elements (ENCODE) consortium aims to identify all functional elements in the human genome including transcripts, transcriptional regulatory regions, along with their chromatin states and DNA methylation patterns. The ENCODE project generates data utilizing a variety of techniques that can enrich for regulatory regions, such as chromatin immunoprecipitation (ChIP), micrococcal nuclease (MNase) digestion and DNase I digestion, followed by deeply sequencing the resulting DNA. As part of the ENCODE project, we have developed a Web-accessible repository accessible at http://factorbook.org. In Wiki format, factorbook is a transcription factor (TF)-centric repository of all ENCODE ChIP-seq datasets on TF-binding regions, as well as the rich analysis results of these data. In the first release, factorbook contains 457 ChIP-seq datasets on 119 TFs in a number of human cell lines, the average profiles of histone modifications and nucleosome positioning around the TF-binding regions, sequence motifs enriched in the regions and the distance and orientation preferences between motif sites.
Nucleic Acids Research | 2014
Jiali Zhuang; Jie Wang; William E. Theurkauf; Zhiping Weng
Insertions and excisions of transposable elements (TEs) affect both the stability and variability of the genome. Studying the dynamics of transposition at the population level can provide crucial insights into the processes and mechanisms of genome evolution. Pooling genomic materials from multiple individuals followed by high-throughput sequencing is an efficient way of characterizing genomic polymorphisms in a population. Here we describe a novel method named TEMP, specifically designed to detect TE movements present with a wide range of frequencies in a population. By combining the information provided by pair-end reads and split reads, TEMP is able to identify both the presence and absence of TE insertions in genomic DNA sequences derived from heterogeneous samples; accurately estimate the frequencies of transposition events in the population and pinpoint junctions of high frequency transposition events at nucleotide resolution. Simulation data indicate that TEMP outperforms other algorithms such as PoPoolationTE, RetroSeq, VariationHunter and GASVPro. TEMP also performs well on whole-genome human data derived from the 1000 Genomes Project. We applied TEMP to characterize the TE frequencies in a wild Drosophila melanogaster population and study the inheritance patterns of TEs during hybrid dysgenesis. We also identified sequence signatures of TE insertion and possible molecular effects of TE movements, such as altered gene expression and piRNA production. TEMP is freely available at github: https://github.com/JialiUMassWengLab/TEMP.git.
Nucleic Acids Research | 2015
Jiali Zhuang; Zhiping Weng
Genomic structural variations (SVs) are pervasive in many types of cancers. Characterizing their underlying mechanisms and potential molecular consequences is crucial for understanding the basic biology of tumorigenesis. Here, we engineered a local assembly-based algorithm (laSV) that detects SVs with high accuracy from paired-end high-throughput genomic sequencing data and pinpoints their breakpoints at single base-pair resolution. By applying laSV to 97 tumor-normal paired genomic sequencing datasets across six cancer types produced by The Cancer Genome Atlas Research Network, we discovered that non-allelic homologous recombination is the primary mechanism for generating somatic SVs in acute myeloid leukemia. This finding contrasts with results for the other five types of solid tumors, in which non-homologous end joining and microhomology end joining are the predominant mechanisms. We also found that the genes recursively mutated by single nucleotide alterations differed from the genes recursively mutated by SVs, suggesting that these two types of genetic alterations play different roles during cancer progression. We further characterized how the gene structures of the oncogene JAK1 and the tumor suppressors KDM6A and RB1 are affected by somatic SVs and discussed the potential functional implications of intergenic SVs.
Nature Genetics | 2017
Anton Henssen; Richard Koche; Jiali Zhuang; Eileen Jiang; Casie Reed; Amy Eisenberg; Eric Still; Ian Macarthur; Elias Rodríguez-Fos; Santiago Gonzalez; Montserrat Puiggròs; Andrew N. Blackford; Christopher E. Mason; Elisa de Stanchina; Mithat Gonen; Anne Katrin Emde; Minita Shah; Kanika Arora; Catherine Reeves; Nicholas D. Socci; Elizabeth J. Perlman; Cristina R. Antonescu; Charles W. M. Roberts; Hanno Steen; Elizabeth Mullen; David Torrents; Zhiping Weng; Scott A. Armstrong; Alex Kentsis
Genomic rearrangements are a hallmark of human cancers. Here, we identify the piggyBac transposable element derived 5 (PGBD5) gene as encoding an active DNA transposase expressed in the majority of childhood solid tumors, including lethal rhabdoid tumors. Using assembly-based whole-genome DNA sequencing, we found previously undefined genomic rearrangements in human rhabdoid tumors. These rearrangements involved PGBD5-specific signal (PSS) sequences at their breakpoints and recurrently inactivated tumor-suppressor genes. PGBD5 was physically associated with genomic PSS sequences that were also sufficient to mediate PGBD5-induced DNA rearrangements in rhabdoid tumor cells. Ectopic expression of PGBD5 in primary immortalized human cells was sufficient to promote cell transformation in vivo. This activity required specific catalytic residues in the PGBD5 transposase domain as well as end-joining DNA repair and induced structural rearrangements with PSS breakpoints. These results define PGBD5 as an oncogenic mutator and provide a plausible mechanism for site-specific DNA rearrangements in childhood and adult solid tumors.
BMC Genomics | 2016
Anton Henssen; Eileen Jiang; Jiali Zhuang; Luca Pinello; Nicholas D. Socci; Richard Koche; Mithat Gonen; Camila Villasante; Scott A. Armstrong; Daniel E. Bauer; Zhiping Weng; Alex Kentsis
BackgroundNumerous human genes encode potentially active DNA transposases or recombinases, but our understanding of their functions remains limited due to shortage of methods to profile their activities on endogenous genomic substrates.ResultsTo enable functional analysis of human transposase-derived genes, we combined forward chemical genetic hypoxanthine-guanine phosphoribosyltransferase 1 (HPRT1) screening with massively parallel paired-end DNA sequencing and structural variant genome assembly and analysis. Here, we report the HPRT1 mutational spectrum induced by the human transposase PGBD5, including PGBD5-specific signal sequences (PSS) that serve as potential genomic rearrangement substrates.ConclusionsThe discovered PSS motifs and high-throughput forward chemical genomic screening approach should prove useful for the elucidation of endogenous genome remodeling activities of PGBD5 and other domesticated human DNA transposases and recombinases.
Nature Genetics | 2017
Anton Henssen; Richard Koche; Jiali Zhuang; Eileen Jiang; Casie Reed; Amy Eisenberg; Eric Still; Ian Macarthur; Elias Rodríguez-Fos; Santiago Gonzalez; Montserrat Puiggròs; Andrew N. Blackford; Christopher E. Mason; Elisa de Stanchina; Mithat Gonen; Anne-Katrin Emde; Minita Shah; Kanika Arora; Catherine Reeves; Nicholas D. Socci; Elizabeth J. Perlman; Cristina R. Antonescu; Charles W. M. Roberts; Hanno Steen; Elizabeth Mullen; David Torrents; Zhiping Weng; Scott A. Armstrong; Alex Kentsis
Nat. Genet.; doi:10.1038/ng.3866; corrected online 24 May 2017 In the version of this article initially published online, the affiliations for Jiali Zhuang listed an incorrect present address instead of an equal contribution. The error has been corrected in the print, PDF and HTML versions of this article.
bioRxiv | 2015
Bong-Hyun Kim; Jiali Zhuang; Jie Wang; Zhiping Weng
Summary High-throughput sequencing technologies such as ChIP-seq have deepened our understanding in many biological processes. De novo motif search is one of the key downstream computational analysis following the ChIP-seq experiments and several algorithms have been proposed for this purpose. However, most web-based systems do not perform independent filtering or enrichment analyses to ensure the quality of the discovered motifs. Here, we developed a web server Factorbook Motif Pipeline based on an algorithm used in analyzing ENCODE consortium ChIP-seq datasets. It performs comprehensive analysis on the set of peaks detected from a ChIP-seq experiments: (i) de novo motif discovery; (ii) independent composition and bias analyses and (iii) matching to the annotated motifs. The statistical tests employed in our pipeline provide a reliable measure of confidence as to how significant are the motifs reported in the discovery step. Availability Factorbook Motif Pipeline source code is accessible through the following URL. https://github.com/joshuabhk/factorbook-motif-pipeline
Journal of Biomolecular Structure & Dynamics | 2013
Jie Wang; Jiali Zhuang; Sowmya Iyer; Xin Lin; Troy W. Whitfield; Melissa C. Greven; Brian G. Pierce; Xianjun Dong; Anshul Kundaje; Yong Cheng; Oliver J. Rando; Ewan Birney; Richard M. Myers; William S. Noble; Michael Snyder; Zhiping Weng
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become the dominant technique for mapping the transcription factor (TF) binding regions genome-wide. We performed an integrative analysis centered around 457 ChIP-seq data sets on 119 human TFs generated by the ENCODE Consortium. We identified highly enriched sequence motifs in most data sets, revealing new motifs and validating known ones. The motif sites (TF binding sites) are evolutionarily highly conserved and show distinct footprints upon DNase I digestion. We frequently detected secondary motifs in addition to the canonical motifs of the TFs, indicating tethered binding and cobinding between multiple TFs. We observed significant position and orientation preferences between many cobinding TFs. Genes specifically expressed in a cell line are often associated with a greater occurrence of nearby TF binding in that cell line. We observed cell-line-specific secondary motifs that mediate the binding of the histone deacetylase HDAC2 and the enhancer-binding protein EP300. TF binding sites are located in GC-rich, nucleosome-depleted, and DNase I sensitive regions, flanked by well-positioned nucleosomes, and many of these features show cell type specificity. The GC-richness may be beneficial for regulating TF binding, because, when unoccupied by a TF, these regions are occupied by nucleosomes in vivo. We present the results of our analysis in a TF-centric web repository Factorbook (http://factorbook.org) and will continually update this repository as more ENCODE data are generated.
Klinische Padiatrie | 2017
Ag Henssen; Richard Koche; Jiali Zhuang; E Jiang; C Reed; A Eisenberg; Eric Still; Elias Rodríguez-Fos; Santiago Gonzalez; Montserrat Puiggròs; Andrew N. Blackford; Christopher E. Mason; E de Stanchina; M Gönen; Anne-Katrin Emde; Minita Shah; Kanika Arora; Catherine Reeves; Nicholas D. Socci; Elizabeth J. Perlman; Cr Antonescu; Cwm Roberts; Hanno Steen; Elizabeth Mullen; David Torrents; Zhiping Weng; Scott A. Armstrong; A Kentsis