Jian-Chu Zhang
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jian-Chu Zhang.
PLOS ONE | 2012
Zhi-Jian Ye; Ming-Li Yuan; Qiong Zhou; Rong-Hui Du; Wei-Bing Yang; Xian-Zhi Xiong; Jian-Chu Zhang; Cong Wu; Shou-Ming Qin; Huan-Zhong Shi
Newly discovered IL-9–producing CD4+ helper T cells (Th9 cells) have been reported to contribute to tissue inflammation and immune responses, however, differentiation and immune regulation of Th9 cells in tuberculosis remain unknown. In the present study, our data showed that increased Th9 cells with the phenotype of effector memory cells were found to be in tuberculous pleural effusion as compared with blood. TGF-β was essential for Th9 cell differentiation from naïve CD4+ T cells stimulated with PMA and ionomycin in vitro for 5 h, and addition of IL-1β, IL-4 or IL-6 further augmented Th9 cell differentiation. Tuberculous pleural effusion and supernatants of cultured pleural mesothelial cells were chemotactic for Th9 cells, and this activity was partly blocked by anti-CCL20 antibody. IL-9 promoted the pleural mesothelial cell repairing and inhibited IFN-γ-induced pleural mesothelial cell apoptosis. Moreover, pleural mesothelial cells promoted Th9 cell differentiation by presenting antigen. Collectively, these data provide new information concerning Th9 cells, in particular the collaborative immune regulation between Th9 cells and pleural mesothelial cells in human M. tuberculosis infection. In particular, pleural mesothelial cells were able to function as antigen-presenting cells to stimulate Th9 cell differentiation.
Cancer Letters | 2012
Zhi-Jian Ye; Qiong Zhou; Wen Yin; Ming-Li Yuan; Wei-Bing Yang; Fei Xiang; Jian-Chu Zhang; Jian-Bao Xin; Xian-Zhi Xiong; Huan-Zhong Shi
Th22 cells have been reported to be involved in human cancers. However, differentiation and immune regulation of Th22 cells in malignant pleural effusion (MPE) remain unknown. We noted that Th22 cell numbers were increased in MPE, and that IL-22 substantially promoted the proliferation and migratory activity of A549 cells. Moreover, IL-22 could strongly facilitate intercellular adhesion of A549 cells to pleural mesothelial cell monolayers. Our data revealed that the increase in Th22 cells in MPE was due to pleural cytokines and chemokines, and that Th22 exerted an important immune regulation on cancer cells in human pleural malignant environment.
Respiratory Research | 2011
Zhi-Jian Ye; Qiong Zhou; Jian-Chu Zhang; Xiao Li; Cong Wu; Shou-Ming Qin; Jian-Bao Xin; Huan-Zhong Shi
BackgroundBoth regulatory T cells (Tregs) and T helper IL-17-producing cells (Th17 cells) have been found to be involved in human malignancies, however, the possible implication of Tregs in regulating generation and differentiation of Th17 cells in malignant pleural effusion remains to be elucidated.MethodsThe numbers of both CD39+Tregs and Th17 cells in malignant pleural effusion and peripheral blood from patients with lung cancer were determined by flow cytometry. The regulation and mechanism of Tregs on generation and differentiation of Th17 cells were explored.ResultsBoth CD39+Tregs and Th17 cells were increased in malignant pleural effusion when compared with blood, and the numbers of CD39+Tregs were correlated negatively with those of Th17 cells. It was also noted that high levels of IL-1β, IL-6, and TGF-β1 could be observed in malignant pleural effusion when compared the corresponding serum, and that pleural CD39+Tregs could express latency-associated peptide on their surface. When naïve CD4+ T cells were cocultured with CD39+Tregs, Th17 cell numbers decreased as CD39+Treg numbers increased, addition of the anti-latency-associated peptide mAb to the coculture reverted the inhibitory effect exerted by CD39+Tregs.ConclusionsTherefore, the above results indicate that CD39+Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.
PLOS ONE | 2012
Wei-Bing Yang; Qiu-Li Liang; Zhi-Jian Ye; Chun-Mi Niu; Wanli Ma; Xian-Zhi Xiong; Rong-Hui Du; Qiong Zhou; Jian-Chu Zhang; Huan-Zhong Shi
The objective of the present study was to investigate the presence of interleukin (IL)-27 in pleural effusions and to evaluate the diagnostic significance of pleural IL-27. The concentrations of IL-27 were determined in pleural fluids and sera from 68 patients with tuberculous pleural effusion, 63 malignant pleural effusion, 22 infectious pleural effusion, and 21 transudative pleural effusion. Flow cytometry was used to identify which pleural cell types expressed IL-27. It was found that the concentrations of pleural IL-27 in tuberculous group were significantly higher than those in malignant, infectious, and transudative groups, respectively. Pleural CD4+ T cells, CD8+ T cells, NK cells, NKT cells, B cells, monocytes, macrophages, and mesothelial cells might be the cell sources for IL-27. IL-27 levels could be used for diagnostic purpose for tuberculous pleural effusion, with the cut off value of 1,007 ng/L, IL-27 had a sensitivity of 92.7% and specificity of 99.1% for differential diagnosing tuberculous pleural effusion from non-tuberculous pleural effusions. Therefore, compared to non-tuberculous pleural effusions, IL-27 appeared to be increased in tuberculous pleural effusion. IL-27 in pleural fluid is a sensitive and specific biomarker for the differential diagnosing tuberculous pleural effusion from pleural effusions with the other causes.
American Journal of Respiratory and Critical Care Medicine | 2012
Zhi-Jian Ye; Qiong Zhou; Wen Yin; Ming-Li Yuan; Wei-Bing Yang; Xian-Zhi Xiong; Jian-Chu Zhang; Huan-Zhong Shi
RATIONALE IL-9-producing CD4(+) T cells (Th9 cells) have been reported to be involved in inflammation and immune diseases. However, the involvement of Th9 cells in malignancy has not been investigated. OBJECTIVES To elucidate the mechanism by which Th9 cells differentiate in malignant pleural effusion (MPE) and to explore the immune regulation of Th9 cells on lung cancer cells. METHODS Distribution of Th9 cells in relation to Th17 and Th1 cells in both MPE and blood were determined. The effects and mechanisms of proinflammatory cytokines and regulatory T cells on differentiation of Th9 cells in vitro were explored. The impacts and signal transductions of IL-9, IL-17, and IFN-γ on lung cancer cell lines were also investigated. MEASUREMENTS AND MAIN RESULTS The numbers of Th9, Th17, and Th1 cells were all increased in MPE when compared with blood. The increase in Th9 cells in MPE was due to the promotion by cytokines and regulatory T cells. By activating STAT3 signaling, both IL-9 and IL-17 substantially promoted the proliferation and migratory activity of lung cancer cells, whereas IFN-γ, which activated STAT1 signaling, was noted to suppress lung cancer cell proliferation and migration. IFN-γ could induce lung cancer cell apoptosis. Moreover, IL-9 and IFN-γ, but not IL-17, could strongly facilitate intercellular adhesion of lung cancer cells to pleural mesothelial cell monolayers. CONCLUSIONS Our data revealed that Th9 cells were increased in MPE and that Th9 cells exerted an important immune regulation on lung cancer cells in human tumor environment.
PLOS ONE | 2014
Yang Jin; Yong Wan; Gang Chen; Long Chen; Ming-Qiang Zhang; Li Deng; Jian-Chu Zhang; Xian-Zhi Xiong; Jian-Bao Xin
Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic pulmonary and systematic inflammation. An abnormal adaptive immune response leads to an imbalance between pro- and anti-inflammatory processes. T-helper (Th), T-cytotoxic (Tc) and T-regulatory (Treg) cells may play important roles in immune and inflammatory responses. This study was conducted to clarify the changes and imbalance of cytokines and T lymphocyte subsets in patients with COPD, especially during acute exacerbations (AECOPD). Methods Twenty-three patients with stable COPD (SCOPD) and 21 patients with AECOPD were enrolled in the present study. In addition, 20 age-, sex- and weight-matched non-smoking healthy volunteers were included as controls. The serum levels of selected cytokines (TGF-β, IL-10, TNF-α, IL-17 and IL-9) were measured by enzyme-linked immunosorbent assay (ELISA) kits. Furthermore, the T lymphocyte subsets collected from peripheral blood samples were evaluated by flow cytometry after staining with anti-CD3-APC, anti-CD4-PerCP, anti-CD8- PerCP, anti-CD25-FITC and anti-FoxP3-PE monoclonal antibodies. Importantly, to remove the confounding effects of inflammatory factors, the authors introduced a concept of “inflammation adjustment” and corrected each measured value using representative inflammatory markers, such as TNF-α and IL-17. Results Unlike the other cytokines, serum TGF-β levels were considerably higher in patients with AECOPD relative to the control group regardless of adjustment. There were no significant differences in the percentages of either CD4+ or CD8+ T cells among the three groups. Although Tregs were relatively upregulated during acute exacerbations, their capacities of generation and differentiation were far from sufficient. Finally, the authors noted that the ratios of Treg/IL-17 were similar among groups. Conclusions These observations suggest that in patients with COPD, especially during acute exacerbations, both pro-inflammatory and anti-inflammatory reactions are strengthened, with the pro-inflammatory reactions dominating. Although the Treg/IL-17 ratios were normal, the regulatory T cells were still insufficient to suppress the accompanying increases in inflammation. All of these changes suggest a complicated mechanism of pro- and anti-inflammatory imbalance which needs to be further investigated.
PLOS ONE | 2014
Ming-Qiang Zhang; Yong Wan; Yang Jin; Jian-Bao Xin; Jian-Chu Zhang; Xian-Zhi Xiong; Long Chen; Gang Chen
Background CD4+ T cells in the lung are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), although CD4+ T cell subsets and the direct effect of smoking on these cells, especially the expression of MRs, have not been comprehensively examined. Methods First, circulating CD4+ T cell subsets in healthy nonsmokers, patients with SCOPD and patients with AECOPD were evaluated by flow cytometry. Then, differentiation experiments were carried out using RT-PCR, and Ki-67/Annexin V antibodies were used to measure proliferation and apoptosis. We also explored the impact of CSE on the differentiation and survival of CD4+Th/Tregs and examined the expression of MRs in healthy nonsmokers and patients with SCOPD. Results We found the percentages of circulating Th1 and Th17 cells were increased in patients with AECOPD, while the percentage of Th2 cells was decreased in patients with SCOPD. The percentages of Th10 cells were decreased in both patients with SCOPD and patients with AECOPD, while the percentages of Tregs were increased. In addition, the percentages of CD4+α-7+ T cells were decreased in patients with SCOPD and patients with AECOPD. However, only the decrease observed in patients with AECOPD was significant. In vitro studies also revealed MR expression affected the polarization of T cells, with different CD4+ T cell subtypes acquiring different MR expression profiles. The addition of CSE facilitated CD4+ T cell polarization towards pro-inflammatory subsets (Th1 and Th17) and affected the survival of CD4+ T cells and Treg cells by up-regulating the expression of MR3 and 5, resulting in an imbalance of CD4+ T cell subsets. Conclusions Our findings suggest an imbalance of circulating CD4+ T cell subsets is involved in COPD pathogenesis in smokers. Cigarette smoking may contribute to this imbalance by affecting the polarization and survival of Th/Tregs through the up-regulation of MR3 and MR5.
Scientific Reports | 2016
Jian-Chu Zhang; Gang Chen; Long Chen; Zhao-Ji Meng; Xian-Zhi Xiong; Hong-Ju Liu; Yang Jin; Xiaonan Tao; Jiang-Hua Wu; Sheng-Wen Sun
BMP and activin membrane-bound inhibitor (BAMBI) is postulated to inhibit or modulate transforming growth factor β (TGF-β) signaling. Furthermore, strong upregulation of BAMBI expression following in vitro infection of chronic obstructive pulmonary disease (COPD) lung tissue has been demonstrated. In this study, we investigated whether TGF-β/BAMBI pathway is associated with COPD. Blood samples were obtained from 27 healthy controls (HC), 24 healthy smokers (HS) and 29 COPD patients. Elevated Th17/Treg ratios, and increased levels of BAMBI protein and mRNA (in plasma and CD4+ T cells respectively), were observed in COPD compared with HC and HS. BAMBI expression was first observed on human CD4+ T cells, with a typical membrane-bound pattern. The enhanced plasma BAMBI levels in COPD positively correlated with the increased plasma TGF-β1 levels and Th17/Treg ratio. Together, an impaired TGF-β/BAMBI pathway may promote the inflammation leading to Th17/Treg imbalance, which is a new mechanism in smokers who develop COPD.
Lung | 2013
Xiaoning Bu; Qiong Zhou; Jian-Chu Zhang; Zhi-Jian Ye; Zhao-Hui Tong; Huan-Zhong Shi
BackgroundOur previous data have demonstrated that the number of IL-9-producing CD4+ T cells (Th9 cells) in malignant pleural effusion (MPE) was significantly increased when compared with that in blood. The aim of the present study was to investigate the mechanism by which Th9 cells were recruited into MPE and the phenotypic characteristics of pleural Th9 cells.MethodsThe expression patterns of chemokine receptors (CCRs) on Th9 cells and the chemoattractant activity of chemokine CCL20 for Th9 cells in vitro were observed. The phenotypic features of Th9 cells in MPE were determined by flow cytometry.ResultsWe found that Th9 cells in both MPE and blood expressed a high level of CCR6 on their surface. An in vitro migration assay confirmed that both MPE and supernatants of cultured pleural mesothelial cells could induce the migration of Th9 cells, and anti-CCL20 mAb significantly inhibited the ability of MPE or supernatants to stimulate Th9 cell chemotaxis. We also noted that pleural Th9 cells expressed high levels of CD45RO and very low levels of CD45RA and CD62L, displaying the phenotype of effector memory cells.ConclusionsOur data revealed that recruitment of Th9 cells into MPE could be induced by pleural CCL20 and that the majority of Th9 cells in MPE displayed the phenotype of effector memory cells.
Journal of Clinical Immunology | 2013
Xiao Li; Qiong Zhou; Wei-Bing Yang; Xian-Zhi Xiong; R. H. Du; Jian-Chu Zhang
IL-17–producing CD8+ T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ–producing CD8+ T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8+ T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6+ CD8+ T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8+ T cells at sites of TPE via cell–cell interactions.