Jian Hua Zheng
Albert Einstein College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jian Hua Zheng.
Journal of Virology | 2008
Aviva Joseph; Jian Hua Zheng; Antonia Follenzi; Teresa P. DiLorenzo; Kaori Sango; Jaime Hyman; Ken Chen; Alicja Piechocka-Trocha; Christian Brander; Erik Hooijberg; Dario A. A. Vignali; Bruce D. Walker; Harris Goldstein
ABSTRACT The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV- or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8+ T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) α and β chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR α and TCR β chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.
Journal of Virology | 2010
Aviva Joseph; Jian Hua Zheng; Ken Chen; Monica Dutta; Cindy Chen; Gabriela Stiegler; Renate Kunert; Antonia Follenzi; Harris Goldstein
ABSTRACT Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/γcnull mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/γcnull mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1JR-CSF, mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/γcnull mice inoculated with equivalent high-titer HIV-1JR-CSF. These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.
Journal of Virology | 2006
Jinglin Sun; Timothy J. Soos; Vineet N. KewalRamani; Kristin Osiecki; Jian Hua Zheng; Laurie Falkin; Laura Santambrogio; Dan R. Littman; Harris Goldstein
ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-encoded Tat provides transcriptional activation critical for efficient HIV-1 replication by interacting with cyclin T1 and recruiting P-TEFb to efficiently elongate the nascent HIV transcript. Tat-mediated transcriptional activation in mice is precluded by species-specific structural differences that prevent Tat interaction with mouse cyclin T1 and severely compromise HIV-1 replication in mouse cells. We investigated whether transgenic mice expressing human cyclin T1 under the control of a murine CD4 promoter/enhancer cassette that directs gene expression to CD4+ T lymphocytes and monocytes/macrophages (hu-cycT1 mice) would display Tat responsiveness in their CD4-expressing mouse cells and selectively increase HIV-1 production in this cellular population, which is infected primarily in HIV-1-positive individuals. To this end, we crossed hu-cycT1 mice with JR-CSF transgenic mice carrying the full-length HIV-1JR-CSF provirus under the control of the endogenous HIV-1 long terminal repeat and demonstrated that human cyclin T1 expression is sufficient to support Tat-mediated transactivation in primary mouse CD4 T lymphocytes and monocytes/macrophages and increases in vitro and in vivo HIV-1 production by these stimulated cells. Increased HIV-1 production by CD4+ T lymphocytes was paralleled with their specific depletion in the peripheral blood of the JR-CSF/hu-cycT1 mice, which increased over time. In addition, increased HIV-1 transgene expression due to human cyclin T1 expression was associated with increased lipopolysaccharide-stimulated monocyte chemoattractant protein 1 production by JR-CSF mouse monocytes/macrophages in vitro. Therefore, the JR-CSF/hu-cycT1 mice should provide an improved mouse system for investigating the pathogenesis of various aspects of HIV-1-mediated disease and the efficacies of therapeutic interventions.
AIDS Research and Human Retroviruses | 2009
Sima Toussi; Aviva Joseph; Jian Hua Zheng; Monica Dutta; Laura Santambrogio; Harris Goldstein
To delineate the mechanistic basis for the epidemiological association between methamphetamine use and accelerated progression to AIDS, we evaluated the direct in vitro and in vivo effects of methamphetamine on HIV-1 replication. Methamphetamine administration significantly increased HIV-1 production by both HIV-infected monocytes and CD4 T lymphocytes in vitro. In addition, in vivo methamphetamine treatment increased HIV production and viremia in mice transgenic for a replication-competent HIV provirus and human cyclin T1. Methamphetamine activated transcription of the HIV long terminal repeat (LTR) regulatory region, was associated with nuclear translocation of NF-kappaB. Our results provide further insights into the mechanisms by which methamphetamine accelerates disease course in HIV-infected individuals.
Journal of Virology | 2015
Kieran Seay; Candice Church; Jian Hua Zheng; Kathryn Deneroff; Christina Ochsenbauer; John C. Kappes; Bai Liu; Emily K. Jeng; Hing C. Wong; Harris Goldstein
ABSTRACT Natural killer (NK) cells with anti-HIV-1 activity may inhibit HIV-1 replication and dissemination during acute HIV-1 infection. We hypothesized that the capacity of NK cells to suppress acute in vivo HIV-1 infection would be augmented by activating them via treatment with an interleukin-15 (IL-15) superagonist, IL-15 bound to soluble IL-15Rα, an approach that potentiates human NK cell-mediated killing of tumor cells. In vitro stimulation of human NK cells with a recombinant IL-15 superagonist significantly induced their expression of the cytotoxic effector molecules granzyme B and perforin; their degranulation upon exposure to K562 cells, as indicated by cell surface expression of CD107a; and their capacity to lyse K562 cells and HIV-1-infected T cells. The impact of IL-15 superagonist-induced activation of human NK cells on acute in vivo HIV-1 infection was investigated by using hu-spl-PBMC-NSG mice, NOD-SCID-IL2rγ−/− (NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMCs) which develop productive in vivo infection after intrasplenic inoculation with HIV-1. IL-15 superagonist treatment potently inhibited acute HIV-1 infection in hu-spl-PBMC-NSG mice even when delayed until 3 days after intrasplenic HIV-1 inoculation. Removal of NK cells from human PBMCs prior to intrasplenic injection into NSG mice completely abrogated IL-15 superagonist-mediated suppression of in vivo HIV-1 infection. Thus, the in vivo activation of NK cells, integral mediators of the innate immune response, by treatment with an IL-15 superagonist increases their anti-HIV activity and enables them to potently suppress acute in vivo HIV-1 infection. These results indicate that in vivo activation of NK cells may represent a new immunotherapeutic approach to suppress acute HIV-1 infection. IMPORTANCE Epidemiological studies have indicated that NK cells contribute to the control of HIV-1 infection, and in vitro studies have demonstrated that NK cells can selectively kill HIV-1-infected cells. We demonstrated that in vivo activation of NK cells by treatment with an IL-15 superagonist that potently stimulates the antitumor activity of NK cells markedly inhibited acute HIV-1 infection in humanized mice, even when activation of NK cells by IL-15 superagonist treatment is delayed until 3 days after HIV-1 inoculation. NK cell depletion from PBMCs prior to their intrasplenic injection abrogated the suppression of in vivo HIV-1 infection observed in humanized mice treated with the IL-15 superagonist, demonstrating that activated human NK cells were mediating IL-15 superagonist-induced inhibition of acute HIV-1 infection. Thus, in vivo immunostimulation of NK cells, a promising therapeutic approach for cancer therapy, may represent a new treatment modality for HIV-1-infected individuals, particularly in the earliest stages of infection.
PLOS ONE | 2013
Kieran Seay; Xiaohua Qi; Jian Hua Zheng; Cong Zhang; Ken Chen; Monica Dutta; Kathryn Deneroff; Christina Ochsenbauer; John C. Kappes; Dan R. Littman; Harris Goldstein
Mice cannot be used to evaluate HIV-1 therapeutics and vaccines because they are not infectible by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 entry and replication including CD4, CCR5 and cyclin T1. We overcame this limitation by constructing mice with CD4 enhancer/promoter-regulated human CD4, CCR5 and cyclin T1 genes integrated as tightly linked transgenes (hCD4/R5/cT1 mice) promoting their efficient co-transmission and enabling the murine CD4-expressing cells to support HIV-1 entry and Tat-mediated LTR transcription. All of the hCD4/R5/cT1 mice developed disseminated infection of tissues that included the spleen, small intestine, lymph nodes and lungs after intravenous injection with an HIV-1 infectious molecular clone (HIV-IMC) expressing Renilla reniformis luciferase (LucR). Furthermore, localized infection of cervical-vaginal mucosal leukocytes developed after intravaginal inoculation of hCD4/R5/cT1 mice with the LucR-expressing HIV-IMC. hCD4/R5/cT1 mice reproducibly developed in vivo infection after inoculation with LucR-expressing HIV-IMC which could be bioluminescently quantified and visualized with a high sensitivity and specificity which enabled them to be used to evaluate the efficacy of HIV-1 therapeutics. Treatment with highly active anti-retroviral therapy or one dose of VRC01, a broadly neutralizing anti-HIV-1 antibody, almost completed inhibited acute systemic HIV-1 infection of the hCD4/R5/cT1 mice. hCD4/R5/cT1 mice could also be used to evaluate the capacity of therapies delivered by gene therapy to inhibit in vivo HIV infection. VRC01 secreted in vivo by primary B cells transduced with a VRC01-encoding lentivirus transplanted into hCD4/R5/cT1 mice markedly inhibited infection after intravenous challenge with LucR-expressing HIV-IMC. The reproducible infection of CD4/R5/cT1 mice with LucR-expressing HIV-IMC after intravenous or mucosal inoculation combined with the availability of LucR-expressing HIV-IMC expressing transmitted/founder and clade A/E and C Envs will provide researchers with a highly accessible pre-clinical in vivo HIV-1-infection model to study HIV-1 acquisition, treatment, and prevention.
Journal of Virology | 2008
Jinglin Sun; Jian Hua Zheng; Mengliang Zhao; Sunhee Lee; Harris Goldstein
ABSTRACT Inflammatory mediators and viral products produced by human immunodeficiency virus (HIV)-infected microglia and astrocytes perturb the function and viability of adjacent uninfected neuronal and glial cells and contribute to the pathogenesis of HIV-associated neurocognitive disorders (HAND). In vivo exposure to lipopolysaccharide (LPS) activates parenchymal microglia and astrocytes and induces cytokine and chemokine production in the brain. HIV-infected individuals display increased circulating LPS levels due to microbial translocation across a compromised mucosa barrier. We hypothesized that HIV-infected microglia and astrocytes display increased sensitivity to the proinflammatory effects of LPS, and this combines with the increased levels of systemic LPS in HIV-infected individuals to contribute to the development of HAND. To examine this possibility, we determined the in vivo responsiveness of HIV-infected microglia and astrocytes to LPS using our mouse model, JR-CSF/human cyclin T1 (JR-CSF/hu-cycT1) mice, which are transgenic for both an integrated full-length infectious HIV type 1 (HIV-1) provirus derived from the primary R5-tropic clinical isolate HIV-1JR-CSF regulated by the endogenous HIV-1 long terminal repeat and the hu-cycT1 gene under the control of a CD4 promoter. In the current report, we demonstrated that in vivo-administered LPS more potently activated JR-CSF/hu-cycT1 mouse microglia and astrocytes and induced a significantly higher degree of monocyte chemoattractant protein production by JR-CSF/hu-cycT1 astrocytes compared to that of the in vivo LPS response of control littermate mouse microglia and astrocytes. These results indicate that HIV infection increases the sensitivity of microglia and astrocytes to inflammatory stimulation and support the use of these mice as a model to investigate various aspects of the in vivo mechanism of HIV-induced neuronal dysfunction.
Journal of Virology | 2015
Kieran Seay; Nazanin Khajoueinejad; Jian Hua Zheng; Patrick F. Kiser; Christina Ochsenbauer; John C. Kappes; Betsy C. Herold; Harris Goldstein
ABSTRACT Epidemiological studies have demonstrated that herpes simplex virus 2 (HSV-2) infection significantly increases the risk of HIV-1 acquisition, thereby contributing to the expanding HIV-1 epidemic. To investigate whether HSV-2 infection directly facilitates mucosal HIV-1 acquisition, we used our transgenic hCD4/R5/cT1 mouse model which circumvents major entry and transcription blocks preventing murine HIV-1 infection by targeting transgenic expression of human CD4, CCR5, and cyclin T1 genes to CD4+ T cells and myeloid-committed cells. Productive infection of mucosal leukocytes, predominantly CD4+ T cells, was detected in all hCD4/R5/cT1 mice intravaginally challenged with an HIV-1 infectious molecular clone, HIV-Du151.2env-NLuc, which expresses an env gene (C.Du151.2) cloned from an acute heterosexually infected woman and a NanoLuc luciferase reporter gene. Lower genital tract HIV-1 infection after HIV-Du151.2env-NLuc intravaginal challenge was increased ∼4-fold in hCD4/R5/cT1 mice coinfected with HSV-2. Furthermore, HIV-1 dissemination to draining lymph nodes was detected only in HSV-2-coinfected mice. HSV-2 infection stimulated local infiltration and activation of CD4+ T cells and dendritic cells, likely contributing to the enhanced HIV-1 infection and dissemination in HSV-2-coinfected mice. We then used this model to demonstrate that a novel gel containing tenofovir disoproxil fumarate (TDF), the more potent prodrug of tenofovir (TFV), but not the TFV microbicide gel utilized in the recent CAPRISA 004, VOICE (Vaginal and Oral Interventions to Control the Epidemic), and FACTS 001 clinical trials, was effective as preexposure prophylaxis (PrEP) to completely prevent vaginal HIV-1 infection in almost half of HSV-2-coinfected mice. These results also support utilization of hCD4/R5/cT1 mice as a highly reproducible immunocompetent preclinical model to evaluate HIV-1 acquisition across the female genital tract. IMPORTANCE Multiple epidemiological studies have reported that genital herpes simplex virus 2 (HSV-2) infection increases the risk of HIV-1 sexual acquisition by severalfold. Understanding the underlying mechanisms by which HSV-2 facilitates HIV-1 infection and optimizing the efficacy of therapies to inhibit HIV-1 infection during HSV-2 coinfection should contribute to reducing HIV-1 transmission. Using our novel transgenic hCD4/R5/cT1 mouse model infectible with HIV-1, we demonstrated that HSV-2 infection enhances vaginal transmission and dissemination of HIV-1 infection while stimulating recruitment and activation of CD4+ T cells and dendritic cells in the lower genital tract. HIV acquisition by hCD4/R5/cT1 mice vaginally coinfected with HSV-2 could be completely prevented in almost half the mice by preexposure prophylaxis (PrEP) with a novel gel containing tenofovir disoproxil fumarate (TDF), the tenofovir prodrug, but not with the tenofovir microbicide gel utilized in CAPRISA-004, VOICE, and FACTS-001 clinical trials. The hCD4/R5/cT1 mice represent a new preclinical mouse model to evaluate vaginal HIV-1 acquisition.
Gene Therapy | 2009
Tsoline Kojaoghlanian; Aviva Joseph; Antonia Follenzi; Jian Hua Zheng; Margarita Leiser; Norman Fleischer; Marshall S. Horwitz; Teresa P. DiLorenzo; Harris Goldstein
The effectiveness of genetic engineering with lentivectors to protect transplanted cells from allogeneic rejection was examined using, as a model, type 1 diabetes treatment with β-cell transplantation, whose widespread use has been limited by the requirement for sustained immunosuppressive treatment to prevent graft rejection. We examined whether lentivectors expressing select immunosuppressive proteins encoded by the adenoviral genome early region 3 (AdE3) would protect transplanted β-cells from an alloimmune attack. The insulin-producing β-cell line βTC-tet (C3HeB/FeJ-derived) was transduced with lentiviruses encoding the AdE3 proteins gp19K and RIDα/β. The efficiency of lentiviral transduction of βTC-tet cells exceeded 85%. Lentivector expression of gp19K decreased surface class I major histocompatibility complex expression by over 90%, whereas RIDα/β expression inhibited cytokine-induced Fas upregulation by over 75%. βTC-tet cells transduced with gp19K and RIDα/β lentivectors, but not with a control lentivector, provided prolonged correction of hyperglycemia after transplantation into diabetic BALB/c severe combined immunodeficient mice reconstituted with allogeneic immune effector cells or into diabetic allogeneic BALB/c mice. Thus, genetic engineering of β-cells using gp19K- and RIDα/β-expressing lentiviral vectors may provide an alternative that has the potential to eliminate or reduce treatment with the potent immunosuppressive agents necessary at present for prolonged engraftment with transplanted islets.
Journal of Virology | 2017
Ariola Bardhi; Yanling Wu; Weizao Chen; Wei Li; Zhongyu Zhu; Jian Hua Zheng; Hing C. Wong; Emily K. Jeng; Jennifer Jones; Christina Ochsenbauer; John C. Kappes; Dimiter S. Dimitrov; Tianlei Ying; Harris Goldstein
ABSTRACT Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir. IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.