Jian-Hua Zhong
University of Macau
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jian-Hua Zhong.
Neurocomputing | 2014
Pak Kin Wong; Zhixin Yang; Chi-Man Vong; Jian-Hua Zhong
Real-time fault diagnostic system is very important to maintain the operation of the gas turbine generator system (GTGS) in power plants, where any abnormal situation will interrupt the electricity supply. The GTGS is complicated and has many types of component faults. To prevent from interruption of electricity supply, a reliable and quick response framework for real-time fault diagnosis of the GTGS is necessary. As the architecture and the learning algorithm of extreme learning machine (ELM) are simple and effective respectively, ELM can identify faults quickly and precisely as compared with traditional identification techniques such as support vector machines (SVM). This paper therefore proposes a new application of ELM for building a real-time fault diagnostic system in which data pre-processing techniques are integrated. In terms of data pre-processing, wavelet packet transform and time-domain statistical features are proposed for extraction of vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features in order to shorten the fault identification time and improve accuracy. To evaluate the system performance, a comparison between ELM and the prevailing SVM on the fault detection was conducted. Experimental results show that the proposed diagnostic framework can detect component faults much faster than SVM, while ELM is competitive with SVM in accuracy. This paper is also the first in the literature that explores the superiority of the fault identification time of ELM.
Entropy | 2016
Zhixin Yang; Jian-Hua Zhong
Acoustic signals are an ideal source of diagnosis data thanks to their intrinsic non-directional coverage, sensitivity to incipient defects, and insensitivity to structural resonance characteristics. However this makes prevailing signal de-nosing and feature extraction methods suffer from high computational cost, low signal to noise ratio (S/N), and difficulty to extract the compound acoustic emissions for various failure types. To address these challenges, we propose a hybrid signal processing technique to depict the embedded signal using generally effective features. The ensemble empirical mode decomposition (EEMD) is adopted as the fundamental pre-processor, which is integrated with the sample entropy (SampEn), singular value decomposition (SVD), and statistic feature processing (SFP) methods. The SampEn and SVD are identified as the condition indicators for periodical and irregular signals, respectively. Moreover, such a hybrid module is self-adaptive and robust to different signals, which ensures the generality of its performance. The hybrid signal processor is further integrated with a probabilistic classifier, pairwise-coupled relevance vector machine (PCRVM), to construct a new fault diagnosis system. Experimental verifications for industrial equipment show that the proposed diagnostic system is superior to prior methods in computational efficiency and the capability of simultaneously processing non-stationary and nonlinear condition monitoring signals.
Neurocomputing | 2016
Pak Kin Wong; Jian-Hua Zhong; Zhixin Yang; Chi-Man Vong
The automotive engine is prone to various faults due to its complex structure and running conditions. Development of a fast response and accurate intelligent system for fault diagnosis of automotive engines is therefore greatly urged. The engine fault diagnosis faces challenges because of the existence of simultaneous-faults which are multiple single-faults appear concurrently. Another challenge is the high cost in acquiring the exponentially increased simultaneous-fault signals. Traditional signal-based engine fault diagnostic systems may not give reliable diagnostic results because they usually rely on single classifier and one kind of engine signal. To enhance the reliability of fault diagnosis and the number of detectable faults, this research proposes a new diagnostic framework namely probabilistic committee machine (PCM). The framework combines feature extraction (empirical mode decomposition and sample entropy), a parameter optimization algorithm, and multiple sparse Bayesian extreme learning machines (SBELM) to form an intelligent diagnostic framework. Multiple SBELM networks are built to form different domain committee members. The members are individually trained using air ratio, ignition pattern and engine sound signals. The diagnostic result from each fault detection member is then combined by using a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifier. Experimental results show the proposed framework is superior to the existing single probabilistic classifier. Moreover, the proposed system can diagnose both single and simultaneous-faults for automotive engines while the system is trained by single-fault patterns only.
Mathematical Problems in Engineering | 2013
Zhixin Yang; Pak Kin Wong; Chi-Man Vong; Jian-Hua Zhong; Jiejunyi Liang
A reliable fault diagnostic system for gas turbine generator system (GTGS), which is complicated and inherent with many types of component faults, is essential to avoid the interruption of electricity supply. However, the GTGS diagnosis faces challenges in terms of the existence of simultaneous-fault diagnosis and high cost in acquiring the exponentially increased simultaneous-fault vibration signals for constructing the diagnostic system. This research proposes a new diagnostic framework combining feature extraction, pairwise-coupled probabilistic classifier, and decision threshold optimization. The feature extraction module adopts wavelet packet transform and time-domain statistical features to extract vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features. The features of single faults in a simultaneous-fault pattern are extracted and then detected using a probabilistic classifier, namely, pairwise-coupled relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is unnecessary. To optimize the decision threshold, this research proposes to use grid search method which can ensure a global solution as compared with traditional computational intelligence techniques. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnosis and is superior to the frameworks without feature extraction and pairwise coupling.
industrial engineering and engineering management | 2010
Jian-Hua Zhong; Zhixin Yang; S. F. Wong
Due to the importance of rotating machinery as one of the most widely used industrial element, development a proper monitoring and fault diagnosis technique to prevent malfunction and failure of machine during operation is necessary. This paper presents a method for gearbox fault diagnosis based on feature extraction technique, distance evaluation technique and the support vector machines (SVMs) ensemble. The method consists of three stages. Firstly, the features of raw data are extracted through the wavelet packet transform (WPT) and time-domain statistical features. Secondly, the compensation distance evaluation technique is applied to select optimal feature via sensitivities ranking. Finally, the optimal features are input into the SVMs to identify different faults. The diagnosis result shows that the SVMs ensemble is able to reliable recognize not only different faults styles and severities but also the compound faults in high accurate rate.
Sensors | 2016
Jian-Hua Zhong; Pak Kin Wong; Zhixin Yang
This study combines signal de-noising, feature extraction, two pairwise-coupled relevance vector machines (PCRVMs) and particle swarm optimization (PSO) for parameter optimization to form an intelligent diagnostic framework for gearbox fault detection. Firstly, the noises of sensor signals are de-noised by using the wavelet threshold method to lower the noise level. Then, the Hilbert-Huang transform (HHT) and energy pattern calculation are applied to extract the fault features from de-noised signals. After that, an eleven-dimension vector, which consists of the energies of nine intrinsic mode functions (IMFs), maximum value of HHT marginal spectrum and its corresponding frequency component, is obtained to represent the features of each gearbox fault. The two PCRVMs serve as two different fault detection committee members, and they are trained by using vibration and sound signals, respectively. The individual diagnostic result from each committee member is then combined by applying a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable faults as compared to individual classifiers acting alone. The effectiveness of the proposed framework is experimentally verified by using test cases. The experimental results show the proposed framework is superior to existing single classifiers in terms of diagnostic accuracies for both single- and simultaneous-faults in the gearbox.
world congress on intelligent control and automation | 2011
Zhixin Yang; Jian-Hua Zhong; S. F. Wong
In this paper, a condition monitoring and fault diagnosis method for rotating machineries using machine learning technologies including artificial neural network (ANNs) and support vector machine (SVMs) is described. The vibration signal is acquired from gearbox used in local power generation industry for analysis of potential defects. Wavelet packet transforms (WPT) and time domains statistical are used to extraction features, and the compensation distance evaluation technique (CDET) is applied to select optimal feature via sensitivities ranking. A comparative experiment study of the efficiency of ANN and SVM in predication of failure is carried out. The results reveal that the proposed feature selection and machine learning algorithms could be effectively used automatic diagnosis of gear faults.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | 2017
Pak Kin Wong; Jian-Hua Zhong; Zhixin Yang; Chi-Man Vong
This paper proposes a new diagnostic framework, namely, probabilistic committee machine, to diagnose simultaneous-fault in the rotating machinery. The new framework combines a feature extraction method with ensemble empirical mode decomposition and singular value decomposition, multiple pairwise-coupled sparse Bayesian extreme learning machines (PCSBELM), and a parameter optimization algorithm to create an intelligent diagnostic framework. The feature extraction method is employed to find the features of single faults in a simultaneous-fault pattern. Multiple PCSBELM networks are built as different signal committee members, and each member is trained using vibration or sound signals respectively. The individual diagnostic result from each fault detection member is then combined by a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable fault as compared to individual classifier acting alone. The effectiveness of the proposed framework is verified by a case study on a gearbox fault detection. Experimental results show the proposed framework is superior to the existing single probabilistic classifier. Moreover, the proposed system can diagnose both single- and simultaneous-faults for the rotating machinery while the framework is trained by single-fault patterns only.
Shock and Vibration | 2016
Jian-Hua Zhong; Jiejunyi Liang; Zhixin Yang; Pak Kin Wong; Xian-Bo Wang
Fault diagnosis is very important to maintain the operation of a gas turbine generator system (GTGS) in power plants, where any abnormal situations will interrupt the electricity supply. The fault diagnosis of the GTGS faces the main challenge that the acquired data, vibration or sound signals, contain a great deal of redundant information which extends the fault identification time and degrades the diagnostic accuracy. To improve the diagnostic performance in the GTGS, an effective fault feature extraction framework is proposed to solve the problem of the signal disorder and redundant information in the acquired signal. The proposed framework combines feature extraction with a general machine learning method, support vector machine (SVM), to implement an intelligent fault diagnosis. The feature extraction method adopts wavelet packet transform and time-domain statistical features to extract the features of faults from the vibration signal. To further reduce the redundant information in extracted features, kernel principal component analysis is applied in this study. Experimental results indicate that the proposed feature extracted technique is an effective method to extract the useful features of faults, resulting in improvement of the performance of fault diagnosis for the GTGS.
Archive | 2016
Zhixin Yang; Xian-Bo Wang; Pak Kin Wong; Jian-Hua Zhong
The data preprocessing, feature extraction, classifier training and testing play as the key components in a typical fault diagnosis system. This paper proposes a new application of extreme learning machines (ELM) in an integrated manner, where multiple ELM layers play correspondingly different roles in the fault diagnosis framework. The ELM based representational learning framework integrates functions including data preprocessing, feature extraction and dimension reduction. In the novel framework, an ELM based autoencoder is trained to get a hidden layer output weight matrix, which is then used to transform the input data into a new feature representation. Finally, a single layered ELM is applied for fault classification. Compared with existing feature extraction methods, the output weight matrix is treated as the mapping result with weighted distribution of input vector. It avoids wiping off “insignificant” feature information that may convey some undiscovered knowledge. The proposed representational learning framework does not need parameters fine-tuning with iterations. Therefore, the training speed is much faster than the traditional back propagation-based DL or support vector machine method. The experimental tests are carried out on a wind turbine generator simulator, which demonstrates the advantages of this method in both speed and accuracy.