Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian-Kang Zhu is active.

Publication


Featured researches published by Jian-Kang Zhu.


Trends in Plant Science | 2001

Plant salt tolerance

Jian-Kang Zhu

Soil salinity is a major abiotic stress in plant agriculture worldwide. This has led to research into salt tolerance with the aim of improving crop plants. However, salt tolerance might have much wider implications because transgenic salt-tolerant plants often also tolerate other stresses including chilling, freezing, heat and drought. Unfortunately, suitable genetic model systems have been hard to find. A recently discovered halophytic plant species, Thellungiella halophila, now promises to help in the detection of new tolerance determinants and operating pathways in a model system that is not limited to Arabidopsis traits or ecotype variations.


The Plant Cell | 2002

Cell Signaling during Cold, Drought, and Salt Stress

Liming Xiong; Karen S. Schumaker; Jian-Kang Zhu

Low temperature, drought, and high salinity are common stress conditions that adversely affect plant growth and crop production. The cellular and molecular responses of plants to environmental stress have been studied intensively ([Thomashow, 1999][1]; [Hasegawa et al., 2000][2]). Understanding the


The Plant Cell | 2004

Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis

Ramanjulu Sunkar; Jian-Kang Zhu

MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are small noncoding RNAs that have recently emerged as important regulators of mRNA degradation, translational repression, and chromatin modification. In Arabidopsis thaliana, 43 miRNAs comprising 15 families have been reported thus far. In an attempt to identify novel and abiotic stress regulated miRNAs and siRNAs, we constructed a library of small RNAs from Arabidopsis seedlings exposed to dehydration, salinity, or cold stress or to the plant stress hormone abscisic acid. Sequencing of the library and subsequent analysis revealed 26 new miRNAs from 34 loci, forming 15 new families. Two of the new miRNAs from three loci are members of previously reported miR171 and miR319 families. Some of the miRNAs are preferentially expressed in specific tissues, and several are either upregulated or downregulated by abiotic stresses. Ten of the miRNAs are highly conserved in other plant species. Fifty-one potential targets with diverse function were predicted for the newly identified miRNAs based on sequence complementarity. In addition to miRNAs, we identified 102 other novel endogenous small RNAs in Arabidopsis. These findings suggest that a large number of miRNAs and other small regulatory RNAs are encoded by the Arabidopsis genome and that some of them may play important roles in plant responses to environmental stresses as well as in development and genome maintenance.


Science | 2009

Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins

Sang-Youl Park; Pauline Fung; Davin R. Jensen; Hiroaki Fujii; Yang Zhao; Shelley Lumba; Julia Santiago; Americo Rodrigues; Tsz-fung Freeman Chow; Simon E. Alfred; Dario Bonetta; Ruth R. Finkelstein; Nicholas J. Provart; Darrell Desveaux; Pedro L. Rodriguez; Peter McCourt; Jian-Kang Zhu; Julian I. Schroeder; Brian F. Volkman; Sean R. Cutler

ABA Receptor Rumbled? The plant hormone abscisic acid (ABA) is critical for normal development and for mediating plant responses to stressful environmental conditions. Now, two papers present analyses of candidate ABA receptors (see the news story by Pennisi). Ma et al. (p. 1064; published online 30 April) and Park et al. (p. 1068, published online 30 April) used independent strategies to search for proteins that physically interact with ABI family phosphatase components of the ABA response signaling pathway. Both groups identified different members of the same family of proteins, which appear to interact with ABI proteins to form a heterocomplex that can act as the ABA receptor. The variety of both families suggests that the ABA receptor may not be one entity, but rather a class of closely related complexes, which may explain previous difficulties in establishing its identity. Links between two ancient multimember protein families signal responses to the plant hormone abscisic acid. Type 2C protein phosphatases (PP2Cs) are vitally involved in abscisic acid (ABA) signaling. Here, we show that a synthetic growth inhibitor called pyrabactin functions as a selective ABA agonist. Pyrabactin acts through PYRABACTIN RESISTANCE 1 (PYR1), the founding member of a family of START proteins called PYR/PYLs, which are necessary for both pyrabactin and ABA signaling in vivo. We show that ABA binds to PYR1, which in turn binds to and inhibits PP2Cs. We conclude that PYR/PYLs are ABA receptors functioning at the apex of a negative regulatory pathway that controls ABA signaling by inhibiting PP2Cs. Our results illustrate the power of the chemical genetic approach for sidestepping genetic redundancy.


Current Opinion in Plant Biology | 2003

Regulation of ion homeostasis under salt stress

Jian-Kang Zhu

When under salt stress, plants maintain a high concentration of K(+) and a low concentration of Na(+) in the cytosol. They do this by regulating the expression and activity of K(+) and Na(+) transporters and of H(+) pumps that generate the driving force for transport. Although salt-stress sensors remain elusive, some of the intermediary signaling components have been identified. Evidence suggests that a protein kinase complex consisting of the myristoylated calcium-binding protein SOS3 and the serine/threonine protein kinase SOS2 is activated by a salt-stress-elicited calcium signal. The protein kinase complex then phosphorylates and activates various ion transporters, such as the plasma membrane Na(+)/H(+) antiporter SOS1.


Frontiers in Plant Science | 2013

Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase

Steven A. Arisz; Ringo van Wijk; Wendy Roels; Jian-Kang Zhu; Michel A. Haring; Teun Munnik

Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using 32P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid 32P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential 32P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid 32P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of 32P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in 32P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in 32P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented.


The Plant Cell | 2008

Criteria for Annotation of Plant MicroRNAs

Blake C. Meyers; Michael J. Axtell; Bonnie Bartel; David P. Bartel; David C. Baulcombe; John L. Bowman; Xiaofeng Cao; James C. Carrington; Xuemei Chen; Pamela J. Green; Sam Griffiths-Jones; Steven E. Jacobsen; Allison C. Mallory; Robert A. Martienssen; R. Scott Poethig; Yijun Qi; Hervé Vaucheret; Olivier Voinnet; Yuichiro Watanabe; Detlef Weigel; Jian-Kang Zhu

MicroRNAs (miRNAs) are ∼21 nucleotide noncoding RNAs produced by Dicer-catalyzed excision from stem-loop precursors. Many plant miRNAs play critical roles in development, nutrient homeostasis, abiotic stress responses, and pathogen responses via interactions with specific target mRNAs. miRNAs are not the only Dicer-derived small RNAs produced by plants: A substantial amount of the total small RNA abundance and an overwhelming amount of small RNA sequence diversity is contributed by distinct classes of 21- to 24-nucleotide short interfering RNAs. This fact, coupled with the rapidly increasing rate of plant small RNA discovery, demands an increased rigor in miRNA annotations. Herein, we update the specific criteria required for the annotation of plant miRNAs, including experimental and computational data, as well as refinements to standard nomenclature.


Cell | 2005

Endogenous siRNAs Derived from a Pair of Natural cis-Antisense Transcripts Regulate Salt Tolerance in Arabidopsis

Omar Borsani; Jianhua Zhu; Paul E. Verslues; Ramanjulu Sunkar; Jian-Kang Zhu

In higher eukaryotes, miRNAs and siRNAs guide translational inhibition, mRNA cleavage, or chromatin regulation. We found that the antisense overlapping gene pair of Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), a stress-related gene, and SRO5, a gene of unknown function, generates two types of siRNAs. When both transcripts are present, a 24-nt siRNA is formed by a biogenesis pathway dependent on DCL2, RDR6, SGS3, and NRPD1A. Initial cleavage of the P5CDH transcript guided by the 24-nt siRNA establishes a phase for the subsequent generation of 21-nt siRNAs by DCL1 and further cleavage of P5CDH transcripts. The expression of SRO5 is induced by salt, and this induction is required to initiate siRNA formation. Our data suggest that the P5CDH and SRO5 proteins are also functionally related, and that the P5CDH-SRO5 gene pair defines a mode of siRNA function and biogenesis that may be applied to other natural cis-antisense gene pairs in eukaryotic genomes.


The Plant Cell | 2006

Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance

Ramanjulu Sunkar; Avnish Kapoor; Jian-Kang Zhu

MicroRNAs (miRNAs) are a class of regulatory RNAs of ∼21 nucleotides that posttranscriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. miR398 targets two closely related Cu/Zn superoxide dismutases (cytosolic CSD1 and chloroplastic CSD2) that can detoxify superoxide radicals. CSD1 and CSD2 transcripts are induced in response to oxidative stress, but the regulatory mechanism of the induction is unknown. Here, we show that miR398 expression is downregulated transcriptionally by oxidative stresses, and this downregulation is important for posttranscriptional CSD1 and CSD2 mRNA accumulation and oxidative stress tolerance. We also provide evidence for an important role of miR398 in specifying the spatial and temporal expression patterns of CSD1 and CSD2 mRNAs. Our results suggest that CSD1 and CSD2 expression is fine-tuned by miR398-directed mRNA cleavage. Additionally, we show that transgenic Arabidopsis thaliana plants overexpressing a miR398-resistant form of CSD2 accumulate more CSD2 mRNA than plants overexpressing a regular CSD2 and are consequently much more tolerant to high light, heavy metals, and other oxidative stresses. Thus, relieving miR398-guided suppression of CSD2 in transgenic plants is an effective new approach to improving plant productivity under oxidative stress conditions.


The Plant Cell | 2002

The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants

Huazhong Shi; Francisco J. Quintero; José M. Pardo; Jian-Kang Zhu

The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na+/H+ antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na+ transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na+ transporters, SOS1 was able to reduce Na+ accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1–green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter–β-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na+ than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na+ than did the wild type. There also was greater Na+ content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na+ transport from root to shoot. We present a model in which SOS1 functions in retrieving Na+ from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na+ into the xylem.

Collaboration


Dive into the Jian-Kang Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viswanathan Chinnusamy

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Liming Xiong

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huiming Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Zhao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge