Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian-Min Zhou is active.

Publication


Featured researches published by Jian-Min Zhou.


Cell Host & Microbe | 2010

Receptor-like Cytoplasmic Kinases Integrate Signaling from Multiple Plant Immune Receptors and Are Targeted by a Pseudomonas syringae Effector

Jie Zhang; Wei Li; Tingting Xiang; Zixu Liu; Kristin Laluk; Xiaojun Ding; Yan Zou; Xiaojuan Zhang; She Chen; Tesfaye Mengiste; Yuelin Zhang; Jian-Min Zhou

Cell-surface-localized plant immune receptors, such as FLS2, detect pathogen-associated molecular patterns (PAMPs) and initiate PAMP-triggered immunity (PTI) through poorly understood signal-transduction pathways. The pathogenic Pseudomonas syringae effector AvrPphB, a cysteine protease, cleaves the Arabidopsis receptor-like cytoplasmic kinase PBS1 to trigger cytoplasmic immune receptor RPS5-specified effector-triggered immunity (ETI). Analyzing the function of AvrPphB in plants lacking RPS5, we find that AvrPphB can inhibit PTI by cleaving additional PBS1-like (PBL) kinases, including BIK1, PBL1, and PBL2. In unstimulated plants, BIK1 and PBL1 interact with FLS2 and are rapidly phosphorylated upon FLS2 activation by its ligand flg22. Genetic and molecular analyses indicate that BIK1, and possibly PBL1, PBL2, and PBS1, integrate immune signaling from multiple immune receptors. Whereas AvrPphB-mediated degradation of one of these kinases, PBS1, is monitored by RPS5 to initiate ETI, this pathogenic effector targets other PBL kinases for PTI inhibition.


Current Biology | 2008

Pseudomonas syringae Effector AvrPto Blocks Innate Immunity by Targeting Receptor Kinases

Tingting Xiang; Na Zong; Yan Zou; Yong Wu; Jie Zhang; Weiman Xing; Yan Li; Xiaoyan Tang; Lihuang Zhu; Jijie Chai; Jian-Min Zhou

Plants use receptor kinases, such as FLS2 and EFR, to perceive bacterial pathogens and initiate innate immunity. This immunity is often suppressed by bacterial effectors, allowing pathogen propagation. To counteract, plants have evolved disease resistance genes that detect the bacterial effectors and reinstate resistance. The Pseudomonas syringae effector AvrPto promotes infection in susceptible plants but triggers resistance in plants carrying the protein kinase Pto and the associated resistance protein Prf. Here we show that AvrPto binds receptor kinases, including Arabidopsis FLS2 and EFR and tomato LeFLS2, to block plant immune responses in the plant cell. The ability to target receptor kinases is required for the virulence function of AvrPto in plants. The FLS2-AvrPto interaction and Pto-AvrPto interaction appear to share similar sequence requirements, and Pto competes with FLS2 for AvrPto binding. The results suggest that the mechanism by which AvrPto recognizes virulence targets is linked to the evolution of Pto, which, in association with Prf, recognizes the bacterium and triggers strong resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis

Ziqiang Zhu; Fengying An; Ying Feng; Pengpeng Li; Li Xue; Mu A; Zhiqiang Jiang; Jong-Myong Kim; Taiko Kim To; Wei Li; Xinyan Zhang; Qiang Yu; Zhi Dong; Wen-Qian Chen; Motoaki Seki; Jian-Min Zhou; Hongwei Guo

Jasmonate (JA) and ethylene (ET) are two major plant hormones that synergistically regulate plant development and tolerance to necrotrophic fungi. Both JA and ET induce the expression of several pathogenesis-related genes, while blocking either signaling pathway abolishes the induction of these genes by JA and ET alone or in combination. However, the molecular basis of JA/ET coaction and signaling interdependency is largely unknown. Here, we report that two Arabidopsis ET-stabilized transcription factors (EIN3 and EIL1) integrate ET and JA signaling in the regulation of gene expression, root development, and necrotrophic pathogen defense. Further studies reveal that JA enhances the transcriptional activity of EIN3/EIL1 by removal of JA-Zim domain (JAZ) proteins, which physically interact with and repress EIN3/EIL1. In addition, we find that JAZ proteins recruit an RPD3-type histone deacetylase (HDA6) as a corepressor that modulates histone acetylation, represses EIN3/EIL1-dependent transcription, and inhibits JA signaling. Our studies identify EIN3/EIL1 as a key integration node whose activation requires both JA and ET signaling, and illustrate transcriptional derepression as a common mechanism to integrate diverse signaling pathways in the regulation of plant development and defense.


Science | 2007

The Phosphothreonine Lyase Activity of a Bacterial Type III Effector Family

Hongtao Li; Hao Xu; Yan Zhou; Jie Zhang; Chengzu Long; Shuqin Li; She Chen; Jian-Min Zhou; Feng Shao

Pathogenic bacteria use the type III secretion system to deliver effector proteins into host cells to modulate the host signaling pathways. In this study, the Shigella type III effector OspF was shown to inactivate mitogen-activated protein kinases (MAPKs) [extracellular signal–regulated kinases 1 and 2 (Erk1/2), c-Jun N-terminal kinase, and p38]. OspF irreversibly removed phosphate groups from the phosphothreonine but not from the phosphotyrosine residue in the activation loop of MAPKs. Mass spectrometry revealed a mass loss of 98 daltons in p-Erk2, due to the abstraction of the α proton concomitant with cleavage of the C-OP bond in the phosphothreonine residue. This unexpected enzymatic activity, termed phosphothreonine lyase, appeared specific for MAPKs and was shared by other OspF family members.


Plant Physiology | 2007

Firefly luciferase complementation imaging assay for protein-protein interactions in plants.

Huamin Chen; Yan Zou; Yulei Shang; Huiqiong Lin; Yujing Wang; Run Cai; Xiaoyan Tang; Jian-Min Zhou

The development of sensitive and versatile techniques to detect protein-protein interactions in vivo is important for understanding protein functions. The previously described techniques, fluorescence resonance energy transfer and bimolecular fluorescence complementation, which are used widely for protein-protein interaction studies in plants, require extensive instrumentation. To facilitate protein-protein interaction studies in plants, we adopted the luciferase complementation imaging assay. The amino-terminal and carboxyl-terminal halves of the firefly luciferase reconstitute active luciferase enzyme only when fused to two interacting proteins, and that can be visualized with a low-light imaging system. A series of plasmid constructs were made to enable the transient expression of fusion proteins or generation of stable transgenic plants. We tested nine pairs of proteins known to interact in plants, including Pseudomonas syringae bacterial effector proteins and their protein targets in the plant, proteins of the SKP1-Cullin-F-box protein E3 ligase complex, the HSP90 chaperone complex, components of disease resistance protein complex, and transcription factors. In each case, strong luciferase complementation was observed for positive interactions. Mutants that are known to compromise protein-protein interactions showed little or much reduced luciferase activity. Thus, the assay is simple, reliable, and quantitative in detection of protein-protein interactions in plants.


Science | 2013

Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex.

Yadong Sun; Lei Li; Alberto P. Macho; Zhifu Han; Zehan Hu; Cyril Zipfel; Jian-Min Zhou; Jijie Chai

First Defense In defense against bacterial infection, plants carry a cell-surface receptor, known as FLS2, that can bind to a fragment of bacterial flagellin and trigger defense responses. Y. Sun et al. (p. 624, published online 10 October) investigated the structural details that govern the binding between FLS2, its co-receptor BAK1, and the flagellin fragment flg22. The assembled complex initiates signals to activate the plants innate immune response. The molecular basis for how a plant heterodimeric receptor responds to bacterial infection signals is elucidated. Flagellin perception in Arabidopsis is through recognition of its highly conserved N-terminal epitope (flg22) by flagellin-sensitive 2 (FLS2). Flg22 binding induces FLS2 heteromerization with BRASSINOSTEROID INSENSITIVE 1–associated kinase 1 (BAK1) and their reciprocal activation followed by plant immunity. Here, we report the crystal structure of FLS2 and BAK1 ectodomains complexed with flg22 at 3.06 angstroms. A conserved and a nonconserved site from the inner surface of the FLS2 solenoid recognize the C- and N-terminal segment of flg22, respectively, without oligomerization or conformational changes in the FLS2 ectodomain. Besides directly interacting with FLS2, BAK1 acts as a co-receptor by recognizing the C terminus of the FLS2-bound flg22. Our data reveal the molecular mechanisms underlying FLS2-BAK1 complex recognition of flg22 and provide insight into the immune receptor complex activation.


The Plant Cell | 2000

Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase.

Yong-Qiang Gu; Caimei Yang; Venkatappa K. Thara; Jian-Min Zhou; Gregory B. Martin

The tomato Pti4 gene encodes a transcription factor that was identified on the basis of its specific interaction with the product of the Pto disease resistance gene in a yeast two-hybrid system. We show here that the Pti4 protein specifically binds the GCC-box cis element, which is present in the promoter region of many pathogenesis-related (PR) genes. Expression of the Pti4 gene in tomato leaves was rapidly induced by ethylene and by infection with Pseudomonas syringae pv tomato, and this induction preceded expression of GCC-box-containing PR genes. Although salicylic acid also induced Pti4 gene expression, it did not induce GCC-box PR genes. Rather, salicylic acid antagonized ethylene-mediated expression of GCC-box PR genes. We demonstrate that the Pti4 protein is specifically phosphorylated by the Pto kinase and that this phosphorylation enhances binding of Pti4 to the GCC box. In addition, induced overexpression of Pto and Pti4 in tomato leaves resulted in a concomitant increase in GCC-box PR genes. Our results support a model in which phosphorylation of the Pti4 protein by the Pto kinase enhances the ability of Pti4 to activate expression of GCC-box PR genes in tomato.


Science | 2012

Chitin-Induced Dimerization Activates a Plant Immune Receptor

Tingting Liu; Zixu Liu; Chuanjun Song; Yunfei Hu; Zhifu Han; Ji She; Fangfang Fan; Jiawei Wang; Changwen Jin; Junbiao Chang; Jian-Min Zhou; Jijie Chai

Dissecting Chitin Binding The chitin in fungal cells walls serves as a trigger to initiate plant defenses against pathogenic fungi. Arabidopsis detects these signals through a cell surface chitin receptor whose intracellular kinase domain initiates a signaling cascade in response to chitin that activates the plants response to infection. Liu et al. (p. 1160) have now solved the crystal structure of the Arabidopsis chitin receptor AtCERK1. The results show how chitin binds to the receptor and suggest that the biological response requires dimerisation of the receptor when it binds a chitin oligomer at least seven or eight subunits long. Structural analysis shows how fungus-derived chitin dimerizes its receptor on target plants and triggers defense responses. Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)–containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.


The Plant Cell | 1999

Overexpression of Pto Activates Defense Responses and Confers Broad Resistance

Xiaoyan Tang; Mingtang Xie; Young Jin Kim; Jian-Min Zhou; Daniel F. Klessig; Gregory B. Martin

The tomato disease resistance (R) gene Pto specifies race-specific resistance to the bacterial pathogen Pseudomonas syringae pv tomato carrying the avrPto gene. Pto encodes a serine/threonine protein kinase that is postulated to be activated by a physical interaction with the AvrPto protein. Here, we report that overexpression of Pto in tomato activates defense responses in the absence of the Pto–AvrPto interaction. Leaves of three transgenic tomato lines carrying the cauliflower mosaic virus 35S::Pto transgene exhibited microscopic cell death, salicylic acid accumulation, and increased expression of pathogenesis-related genes. Cell death in these plants was limited to palisade mesophyll cells and required light for induction. Mesophyll cells of 35S::Pto plants showed the accumulation of autofluorescent compounds, callose deposition, and lignification. When inoculated with P. s. tomato without avrPto, all three 35S::Pto lines displayed significant resistance and supported less bacterial growth than did nontransgenic lines. Similarly, the 35S::Pto lines also were more resistant to Xanthomonas campestris pv vesicatoria and Cladosporium fulvum. These results demonstrate that defense responses and general resistance can be activated by the overexpression of an R gene.


Cell Host & Microbe | 2014

The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity.

Lei Li; Meng Li; Liping Yu; Zhaoyang Zhou; Xiangxiu Liang; Zixu Liu; Gaihong Cai; Liyan Gao; Xiaojuan Zhang; Yingchun Wang; She Chen; Jian-Min Zhou

The Arabidopsis immune receptor FLS2 senses the bacterial flagellin epitope flg22 to activate transient elevation of cytosolic calcium ions, production of reactive oxygen species (ROS), and other signaling events to coordinate antimicrobial defenses, such as stomatal closure that limits bacterial invasion. However, how FLS2 regulates these signaling events remains largely unknown. Here we show that the receptor-like cytoplasmic kinase BIK1, a component of the FLS2 immune receptor complex, not only positively regulates flg22-triggered calcium influx but also directly phosphorylates the NADPH oxidase RbohD at specific sites in a calcium-independent manner to enhance ROS generation. Furthermore, BIK1 and RbohD form a pathway that controls stomatal movement in response to flg22, thereby restricting bacterial entry into leaf tissues. These findings highlight a direct role of the FLS2 complex in the regulation of RbohD-mediated ROS production and stomatal defense.

Collaboration


Dive into the Jian-Min Zhou's collaboration.

Top Co-Authors

Avatar

Xiaoyan Tang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

She Chen

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Jie Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangxiu Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaojuan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhaoyang Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanmei Xiao

Kansas State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge