Jian-Nong Ma
ACADIA Pharmaceuticals Inc.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jian-Nong Ma.
Molecular Pharmacology | 2006
Tracy A. Spalding; Jian-Nong Ma; Thomas R. Ott; Mikael Friberg; Abhishek Bajpai; Stefania Risso Bradley; Robert E. Davis; Mark R. Brann; Ethan S. Burstein
Transmembrane domain 3 (TM3) plays a crucial role mediating muscarinic acetylcholine receptor activation by acetylcholine, carbachol, and other muscarinic agonists. We compared the effects of point mutations throughout TM3 on the interactions of carbachol, 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), a potent structural analog of AC-42 called 4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC-260584), N-desmethylclozapine, and clozapine with the M1 muscarinic receptor. The binding and activation profiles of these ligands fell into three distinct patterns; one exemplified by orthosteric compounds like carbachol, another by structural analogs of AC-42, and a third by structural analogs of N-desmethylclozapine. All mutations tested severely reduced carbachol binding and activation of M1. In contrast, the agonist actions of AC-42 and AC-260584 were greatly potentiated by the W101A mutation, slightly reduced by Y106A, and slightly increased by S109A. Clozapine and N-desmethylclozapine displayed substantially increased maximum responses at the Y106A and W101A mutants, slightly lower activity at S109A, but no substantial changes in potency. At L102A and N110A, agonist responses to AC-42, AC-260584, clozapine, and N-desmethylclozapine were all substantially reduced, but usually less than carbachol. D105A showed no functional responses to all ligands. Displacement and dissociation rate experiments demonstrated clear allosteric properties of AC-42 and AC-260584 but not for N-desmethylclozapine and clozapine, indicating that they may contact different residues than carbachol to activate M1 but occupy substantially overlapping spaces, in contrast to AC-42 and AC-260584, which occupy separable spaces. These results show that M1 receptors can be activated in at least three distinct ways and that there is no requirement for potent muscarinic agonists to mimic acetylcholine interactions with TM3.
Journal of Medicinal Chemistry | 2002
Glenn Croston; Roger Olsson; Erika A. Currier; Ethan S. Burstein; David M. Weiner; Norman Nash; Daniel Severance; Stig Allenmark; Linda Thunberg; Jian-Nong Ma; Nina Mohell; Brian F. O'Dowd; Mark R. Brann; Uli Hacksell
A functional cell-based screen identified 3-(4-chlorophenyl)-3-(2-(dimethylamino)ethyl)isochroman-1-one hydrochloride (AC-7954, 1) as a nonpeptidic agonist of the urotensin-II receptor. Racemic 1 had an EC50 of 300 nM at the human UII receptor and was highly selective. Testing of the enantiopure (+)- and (-)- 1 revealed that the UII receptor activity of racemic 1 resides primarily in (+)-1. Being a selective nonpeptidic druglike UII receptor agonist, (+)-1 will be useful as a pharmacological research tool and a potential drug lead.
British Journal of Pharmacology | 2006
Ethan S. Burstein; Thomas R. Ott; Michele Feddock; Jian-Nong Ma; Steve Fuhs; Steven Wong; Hans H. Schiffer; Mark R. Brann; Norman Nash
Recently, a large family of G‐protein‐coupled receptors called Mas‐related genes (Mrgs), which is selectively expressed in small‐diameter sensory neurons of dorsal root ganglia, was described. A subgroup of human Mrg receptors (MrgX1–X4) is not found in rodents and this has hampered efforts to define the physiological roles of these receptors. MrgX receptors were cloned from rhesus monkey and functionally characterized alongside their human orthologs. Most of the human and rhesus MrgX receptors displayed high constitutive activity in a cellular proliferation assay. Proliferative responses mediated by human or rhesus MrgX1, or rhesus MrgX2 were partially blocked by pertussis toxin (PTX). Proliferative responses mediated by rhesus MrgX3 and both human and rhesus MrgX4 were PTX insensitive. These results indicate that human and rhesus MrgX1 and MrgX2 receptors activate both Gq‐ and Gi‐regulated pathways, while MrgX3 and MrgX4 receptors primarily stimulate Gq‐regulated pathways. Peptides known to activate human MrgX1 and MrgX2 receptors activated the corresponding rhesus receptors in cellular proliferation assays, Ca2+‐mobilization assays, and GTP‐γS‐binding assays. Cortistatin‐14 was selective for human and rhesus MrgX2 receptors over human and rhesus MrgX1 receptors. BAM22 and related peptides strongly activated human MrgX1 receptors, but weakly activated rhesus MrgX1, human MrgX2, and rhesus MrgX2 receptors. These data suggest that the rhesus monkey may be a suitable animal model for exploring the physiological roles of the MrgX receptors.
ACS Chemical Neuroscience | 2013
Krista McFarland; Tracy A. Spalding; David Hubbard; Jian-Nong Ma; Roger Olsson; Ethan S. Burstein
Nurr1 is a nuclear hormone receptor (NucHR) strongly implicated in the growth, maintenance, and survival of dopaminergic neurons. Nurr1 may be unable to bind ligands directly, but it forms heterodimers with other NucHRs that do. Using bioluminescence resonance energy transfer (BRET) assays to directly monitor interactions of Nurr1 with other NucHRs, we found the cancer drug bexarotene (Targretin, also LGD1069) displayed biased interactions with Nurr1-RXR heterodimers compared with RXR-RXR homodimers. Remarkably, at doses up to 100-fold lower than those effective in rodent cancer models, bexarotene rescued dopamine neurons and reversed behavioral deficits in 6-hydroxydopamine (6-OHDA) lesioned rats. Compared to the high doses used in cancer therapy, low doses of bexarotene have significantly milder side effects including a reduced increase in plasma triglycerides and less suppression of thyroid function. On the basis of extrapolations from rat to human doses, we hypothesize that low oral doses of bexarotene may provide an effective and tolerated therapy for Parkinsons disease (PD).
Oncogene | 2004
Jacques Weissman; Jian-Nong Ma; Anthony Essex; Yan Gao; Ethan S. Burstein
Ras proteins mediate the proliferative effects of G-protein-coupled receptors (GPCRs), but the role of Rap proteins in GPCR signaling is unclear. We have developed a novel cellular proliferation assay for examining signal transduction to Rap utilizing Ras–rap chimeras that respond selectively to Rap-specific exchange factors, but which stimulate cellular proliferation through Ras effectors. Both the D1 dopamine receptor (Gs-coupled) and the 5HT1E serotonin receptor (Gi-coupled) mediated cellular proliferation in a Ras/rap chimera-dependent manner. Responses to both receptors were PKA-independent. Both receptors activated Ras/rap and full-length Rap as measured by activation-specific probes. Pertussis toxin blocked Ras/rap-dependent responses to 5HT1E but not D1. Ras/rap-dependent responses to both receptors were insensitive to β–γ scavengers. Responses to 5HT1E, but not D1, were sensitive to inhibition by a dominant-negative C3G fragment, by the Src-like kinase inhibitors PP1 and PP2, and by a dominant-negative mutant of Src. Very similar data were obtained for two other Gi-coupled receptors, the D2 dopamine receptor and the α2C adrenergic receptor. A constitutively active mutant of Gαi2 also mediated Ras/rap-dependent responses. These data indicate that GPCRs coupled to pertussis-toxin-sensitive G-proteins activate Rap through a Gα subunit, C3G, and Src-dependent pathway.
Journal of Pharmacology and Experimental Therapeutics | 2008
Luis R. Gardell; Jian-Nong Ma; Jimmi Gerner Seitzberg; Anne Eeg Knapp; Hans H. Schiffer; Ali Tabatabaei; Christopher N. Davis; Michelle Owens; Bryan Clemons; Kenneth K. Wong; Birgitte W. Lund; Norman Nash; Yan Gao; Jelveh Lameh; Kara R. Schmelzer; Roger Olsson; Ethan S. Burstein
We report the first small-molecule protease-activated receptor (PAR) 2 agonists, AC-55541 [N-[[1-(3-bromo-phenyl)-eth-(E)-ylidene-hydrazinocarbonyl]-(4-oxo-3,4-dihydro-phthalazin-1-yl)-methyl]-benzamide] and AC-264613 [2-oxo-4-phenylpyrrolidine-3-carboxylic acid [1-(3-bromo-phenyl)-(E/Z)-ethylidene]-hydrazide], each representing a distinct chemical series. AC-55541 and AC-264613 each activated PAR2 signaling in cellular proliferation assays, phosphatidylinositol hydrolysis assays, and Ca2+ mobilization assays, with potencies ranging from 200 to 1000 nM for AC-55541 and 30 to 100 nM for AC-264613. In comparison, the PAR2-activating peptide 2-furoyl-LIGRLO-NH2 had similar potency, whereas SLIGRL-NH2 was 30 to 300 times less potent. Neither AC-55541 nor AC-264613 had activity at any of the other PAR receptor subtypes, nor did they have any significant affinity for over 30 other molecular targets involved in nociception. Visualization of EYFP-tagged PAR2 receptors showed that each compound stimulated internalization of PAR2 receptors. AC-55541 and AC-264613 were well absorbed when administered intraperitoneally to rats, each reaching micromolar peak plasma concentrations. AC-55541 and AC-264613 were each stable to metabolism by liver microsomes and maintained sustained exposure in rats, with elimination half-lives of 6.1 and 2.5 h, respectively. Intrapaw administration of AC-55541 or AC-264613 elicited robust and persistent thermal hyperalgesia and edema. Coadministration of either a tachykinin 1 (neurokinin 1) receptor antagonist or a transient receptor potential vanilloid (TRPV) 1 antagonist completely blocked these effects. Systemic administration of either AC-55541 or AC-264613 produced a similar degree of hyperalgesia as was observed when the compounds were administered locally. These compounds represent novel small-molecule PAR2 agonists that will be useful in probing the physiological functions of PAR2 receptors.
Journal of Pharmacology and Experimental Therapeutics | 2011
Jian-Nong Ma; Michelle Owens; Magnus Gustafsson; Jacob Jensen; Ali Tabatabaei; Kara R. Schmelzer; Roger Olsson; Ethan S. Burstein
We discovered structurally novel human calcium-sensing receptor (CaSR) allosteric agonists and compared their pharmacology to phenylalkylamine calcimimetics. 1-Benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol (AC-265347) activated CaSR signaling in cellular proliferation and phosphatidylinositol (PI) hydrolysis assays with potencies of 30 and 10 nM, respectively. (S)-1-Benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol) [(S)-AC-265347], the S-enantiomer of AC-265347, was approximately 10- to 20-fold more potent than (R)-1-benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol) [(R)-AC-265347]. The phenylalkylamines cinacalcet and calindol had activity similar to that of AC-265347 in cellular proliferation assays but less activity in PI assays. All compounds had reduced activity when extracellular Ca2+ was removed, indicating that they cooperate with Ca2+ to activate CaSRs, and all activated CaSR isoforms with the N-terminal extracellular domain deleted, indicating that they interact with the transmembrane domains. In both cases, AC-265347 and therefore (S)-AC-265347 were significantly more efficacious than the phenylalkylamines. Mutations E837A7.39 and I841A7.43 strongly reduced phenylalkylamine-induced signaling, but not AC-265347- or (S)-AC-265347-induced signaling, suggesting different modes of binding. AC-265347 and (S)-AC-265347 stimulated significantly greater responses than cinacalcet or calindol at each of four loss-of-function human polymorphic CaSR variants. AC-265347 did not inhibit the CYP2D6 cytochrome P450 isozyme, unlike cinacalcet, which is a potent CYP2D6 inhibitor. In rats, AC-265347, (S)-AC-265347, and (R)-AC-265347 each reduced serum parathyroid hormone (PTH) with a rank order potency correlated with their in vitro potencies. AC-265347 and (S)-AC-265347 also reduced plasma ionizable calcium ([Ca2+]o). AC-265347 was orally active, and its plasma concentrations correlated well with its effects on serum PTH. Thus, these highly efficacious CaSR allosteric agonists represent leads for developing therapeutic agents with potential advantages over existing therapies.
Current Pharmaceutical Design | 2006
Ethan S. Burstein; Fabrice Piu; Jian-Nong Ma; Jacques Weissman; Erika A. Currier; Norman Nash; David M. Weiner; Tracy A. Spalding; Hans H. Schiffer; Andria L. Del Tredici; Mark R. Brann
Chemical genomics is a drug discovery strategy that relies heavily on high-throughput screening (HTS) and therefore benefits from functional assay platforms that allow HTS against all relevant genomic targets. Receptor Selection and Amplification Technology (R-SAT) is a cell-based, high-throughput functional assay where the receptor stimulus is translated into a measurable cellular response through an extensive signaling cascade occurring over several days. The large biological and chronological separation of stimulus from response provides numerous opportunities for enabling assays and increasing assay sensitivity. Here we review strategies for building homogeneous assay platforms across large gene families by redirecting and/or amplifying signal transduction pathways.
Journal of Medicinal Chemistry | 2009
Hanna Pettersson; Anne Bulow; Fredrik Ek; Jacob Jensen; Lars Korsgaard Ottesen; Alma Fejzic; Jian-Nong Ma; Andria L. Del Tredici; Erika A. Currier; Luis R. Gardell; Ali Tabatabaei; Darren Craig; Krista McFarland; Thomas R. Ott; Fabrice Piu; Ethan S. Burstein; Roger Olsson
A novel class of CB1 inverse agonists was discovered. To efficiently establish structure-activity relationships (SARs), new synthetic methodologies amenable for parallel synthesis were developed. The compounds were evaluated in a mammalian cell-based functional assay and in radioligand binding assays expressing recombinant human cannabinoid receptors (CB1 and CB2). In general, all of the compounds exhibited high binding selectivity at CB1 vs CB2 and the general SAR revealed a lead compound 11-(4-chlorophenyl)dibenzo[b,f][1,4]thiazepine-8-carboxylic acid butylamide (12e) which showed excellent in vivo activity in pharmacodynamic models related to CB1 receptor activity. The low solubility that hampered the development of 12e was solved leading to a potential preclinical candidate 11-(3-chloro-4-fluorophenyl)dibenzo[b,f][1,4]thiazepine-8-carboxylic acid butylamide (12h).
Journal of Neural Transmission | 2011
Ethan S. Burstein; Maria Carlsson; Michelle Owens; Jian-Nong Ma; Hans H. Schiffer; Arvid Carlsson; Uli Hacksell
Abstract(−)-OSU6162 has promise for treating Parkinson’s disease, Huntington’s disease and schizophrenia. Behavioral tests evaluating the locomotor effects of (−) and (+)-OSU6162 on ‘low activity’ animals (reserpinized mice and habituated rats) and ‘high activity’ animals (drug naive mice and non-habituated rats) revealed that both enantiomers of OSU6162 had dual effects on behavior, stimulating locomotor activity in ‘low activity’ animals and inhibiting locomotor activity in ‘high activity’ animals. To elucidate a plausible mechanism of action for their behavioral effects, we evaluated the intrinsic actions of (−)- and (+)-OSU6162, and a collection of other antipsychotic and antiparkinsonian agents at 5-HT2A and D2 receptors in functional assays with various degrees of receptor reserve, including cellular proliferation, phosphatidyl inositol hydrolysis, GTPγS and beta-arrestin recruitment assays. We also tested for possible allosteric actions of (−)-OSU6162 at D2 receptors. Both enantiomers of OSU6162 were medium intrinsic activity partial agonists at 5-HT2A receptors and low intrinsic activity partial agonists at D2 receptors. (+)-OSU6162 had higher efficacy at 5-HT2A receptors, which correlated with its greater stimulatory activity in vivo, but (−)-OSU6162 had higher potency at D2 receptors, which correlated with its greater inhibitory activity in vivo. (−)-OSU6162 did not display any convincing allosteric properties. Both (+)- and (−)-OSU6162 were significantly less active at 27 other monoaminergic receptors and reuptake transporters tested suggesting that D2 and 5-HT2A receptors play crucial roles in mediating their behavioral effects. Compounds with balanced effects on these two receptor systems may offer promise for treating neuropsychiatric diseases.