Jian Payandeh
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jian Payandeh.
Nature | 2011
Jian Payandeh; Todd Scheuer; Ning Zheng; William A. Catterall
Voltage-gated sodium (NaV) channels initiate electrical signalling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity and drug block is unknown. Here we report the crystal structure of a voltage-gated Na+ channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage sensors at 2.7 Å resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures indicate that the voltage-sensor domains and the S4–S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ∼4.6 Å wide, and water filled, with four acidic side chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high-field-strength anionic coordination site, which confers Na+ selectivity through partial dehydration via direct interaction with glutamate side chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs. This structure provides the template for understanding electrical signalling in excitable cells and the actions of drugs used for pain, epilepsy and cardiac arrhythmia at the atomic level.
Nature | 2012
Jian Payandeh; Tamer M. Gamal El-Din; Todd Scheuer; Ning Zheng; William A. Catterall
In excitable cells, voltage-gated sodium (NaV) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of NaV channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type NaVAb channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 Å resolution. Compared to previous structures of NaVAb channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type NaVAb models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type NaVAb, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in NaV channel gating and inactivation. These potential inactivated-state structures provide new insights into NaV channel gating and novel avenues to drug development and therapy for a range of debilitating NaV channelopathies.
Nature | 2014
Lin Tang; Tamer M. Gamal El-Din; Jian Payandeh; Gilbert Q. Martinez; Teresa M. Heard; Todd Scheuer; Ning Zheng; William A. Catterall
Voltage-gated calcium (CaV) channels catalyse rapid, highly selective influx of Ca2+ into cells despite a 70-fold higher extracellular concentration of Na+. How CaV channels solve this fundamental biophysical problem remains unclear. Here we report physiological and crystallographic analyses of a calcium selectivity filter constructed in the homotetrameric bacterial NaV channel NaVAb. Our results reveal interactions of hydrated Ca2+ with two high-affinity Ca2+-binding sites followed by a third lower-affinity site that would coordinate Ca2+ as it moves inward. At the selectivity filter entry, Site 1 is formed by four carboxyl side chains, which have a critical role in determining Ca2+ selectivity. Four carboxyls plus four backbone carbonyls form Site 2, which is targeted by the blocking cations Cd2+ and Mn2+, with single occupancy. The lower-affinity Site 3 is formed by four backbone carbonyls alone, which mediate exit into the central cavity. This pore architecture suggests a conduction pathway involving transitions between two main states with one or two hydrated Ca2+ ions bound in the selectivity filter and supports a ‘knock-off’ mechanism of ion permeation through a stepwise-binding process. The multi-ion selectivity filter of our CaVAb model establishes a structural framework for understanding the mechanisms of ion selectivity and conductance by vertebrate CaV channels.
Nature | 2014
Ji Sun; John R. Bankston; Jian Payandeh; Thomas R. Hinds; William N. Zagotta; Ning Zheng
Nitrate is a primary nutrient for plant growth, but its levels in soil can fluctuate by several orders of magnitude. Previous studies have identified Arabidopsis NRT1.1 as a dual-affinity nitrate transporter that can take up nitrate over a wide range of concentrations. The mode of action of NRT1.1 is controlled by phosphorylation of a key residue, Thr 101; however, how this post-translational modification switches the transporter between two affinity states remains unclear. Here we report the crystal structure of unphosphorylated NRT1.1, which reveals an unexpected homodimer in the inward-facing conformation. In this low-affinity state, the Thr 101 phosphorylation site is embedded in a pocket immediately adjacent to the dimer interface, linking the phosphorylation status of the transporter to its oligomeric state. Using a cell-based fluorescence resonance energy transfer assay, we show that functional NRT1.1 dimerizes in the cell membrane and that the phosphomimetic mutation of Thr 101 converts the protein into a monophasic high-affinity transporter by structurally decoupling the dimer. Together with analyses of the substrate transport tunnel, our results establish a phosphorylation-controlled dimerization switch that allows NRT1.1 to uptake nitrate with two distinct affinity modes.
Science | 2015
Shivani Ahuja; Susmith Mukund; Lunbin Deng; Kuldip Khakh; Elaine Chang; Hoangdung Ho; Stephanie Shriver; Clint Young; Sophia Lin; J. P. Johnson; Ping Wu; Jun Li; Mary Coons; Christine Tam; Bobby Brillantes; Honorio Sampang; Kyle Mortara; Krista K. Bowman; Kevin R. Clark; Alberto Estevez; Zhiwei Xie; Henry Verschoof; Michael Edward Grimwood; Christoph Martin Dehnhardt; Jean-Christophe Andrez; Thilo Focken; Daniel P. Sutherlin; Brian Safina; Melissa A. Starovasnik; Daniel F. Ortwine
A channel involved in pain perception Voltage-gated sodium (Nav) channels propagate electrical signals in muscle cells and neurons. In humans, Nav1.7 plays a key role in pain perception. It is challenging to target a particular Nav isoform; however, arylsulfonamide antagonists selective for Nav1.7 have been reported recently. Ahuja et al. characterized the binding of these small molecules to human Nav channels. To further investigate the mechanism, they engineered a bacterial Nav channel to contain features of the Nav1.7 voltage-sensing domain that is targeted by the antagonist and determined the crystal structure of the chimera bound to an inhibitor. The structure gives insight into the mechanism of voltage sensing and will enable the design of more-selective Nav channel antagonists. Science, this issue p. 10.1126/science.aac5464 Structural studies give insight into how a human sodium channel involved in pain perception can be selectively inhibited. INTRODUCTION Voltage-gated sodium (Nav) channels open and close ion-selective pores in response to changes in membrane potential, and this gating underlies the generation of action potentials. Nav channels are large membrane proteins that contain four peripheral voltage-sensor domains (VSD1–4) that influence the functional state of the central ion-conducting pore. Mutations within the nine human Nav channel isoforms are associated with migraine (Nav1.1), epilepsy (Nav1.1–Nav1.3, Nav1.6), pain (Nav1.7–Nav1.9), cardiac (Nav1.5), and muscle paralysis (Nav1.4) syndromes. Accordingly, Nav channel blockers are used for the treatment of many neurological and cardiovascular disorders. These drugs bind within the central pore domain and generally lack isoform selectivity owing to the high sequence conservation found among Nav channels, limiting their therapeutic utility. In this study, we focused on a recently identified class of isoform-selective small-molecule antagonists that target a unique binding site on the fourth voltage-sensor domain, VSD4. Here we report the structural determination of such small-molecule aryl sulfonamide antagonists in complex with human Nav1.7 VSD4. Our studies demonstrate how this important new class of gating modifier engages VSD4 to inhibit Nav channel activity through a “voltage-sensor trapping” mechanism. RATIONALE For structural studies, we devised a novel protein-engineering strategy that overcomes the technical complexities of producing full-length human Nav channels. Exploiting the evolutionary relationship between human and bacterial Nav channels, we fused portions of Nav1.7 VSD4 onto the bacterial channel NavAb. Using ligand-binding assays and alanine-scanning mutagenesis, we demonstrated that the antagonist binding site present in the human Nav1.7 channel is preserved within this human VSD4-NavAb chimeric channel. This chimeric construct allowed purification, crystallization, and structure determination of potent aryl sulfonamide antagonists in complex with the human Nav1.7 VSD4 binding site. RESULTS Functional studies using patch-clamp electrophysiology revealed that aryl sulfonamide inhibitors bind with high affinity to an isoform-selective and extracellularly accessible site on VSD4. These inhibitors show a high level of state dependence, potently blocking human Nav1.7 only when VSD4 is in its activated conformation. Our crystallographic studies revealed that the anionic warhead from the aryl sulfonamide inhibitors directly engages the fourth gating charge residue (R4) on the voltage-sensing S4 helix, effectively trapping VSD4 in its activated state. Isoform selectivity is achieved by inhibitor interactions with nonconserved residues found on the S2 and S3 transmembrane helices. The drug receptor site is partially submerged within the membrane bilayer, and a peripherally bound phospholipid was observed to form a tripartite complex with the antagonist and channel. CONCLUSION A new crystallization strategy has enabled the structural determination of VSD4 from human Nav1.7 in complex with potent, state-dependent, isoform-selective small-molecule antagonists. Mechanistically, inhibitor binding traps VSD4 in an activated conformation, which stabilizes a nonconductive state of the channel, and likely prevents recovery from inactivation. Unique phospholipid interactions and an exposed inhibitor binding site expand the importance of the membrane bilayer in ion channel biology. We anticipate that these structures will enable drug design efforts aimed at other voltage-gated ion channels and may accelerate the development of new treatments for pain that selectively target Nav1.7. Drug binding sites in sodium channels. (Left) Top-view model of human Nav1.7. When open, sodium passes through the channel. Blocking drugs lacking isoform selectivity bind to a conserved site within the central pore. Isoform-selective inhibitors bind to a distinct site on VSD4. (Right) Strategy for Nav1.7 crystallography. Portions of Nav1.7 VSD4 were grafted onto a tetrameric channel (NavAb) and crystallized. (Inset) Side view of aryl sulfonamide binding site with the S4 helix and arginine gating charges highlighted pink. Voltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies. Targeting the human Nav1.7 channel involved in pain perception, we present a protein-engineering strategy that has allowed us to determine crystal structures of a novel receptor site in complex with isoform-selective antagonists. GX-936 and related inhibitors bind to the activated state of voltage-sensor domain IV (VSD4), where their anionic aryl sulfonamide warhead engages the fourth arginine gating charge on the S4 helix. By opposing VSD4 deactivation, these compounds inhibit Nav1.7 through a voltage-sensor trapping mechanism, likely by stabilizing inactivated states of the channel. Residues from the S2 and S3 helices are key determinants of isoform selectivity, and bound phospholipids implicate the membrane as a modulator of channel function and pharmacology. Our results help to elucidate the molecular basis of voltage sensing and establish structural blueprints to design selective Nav channel antagonists.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Nilmadhab Chakrabarti; Christopher Ing; Jian Payandeh; Ning Zheng; William A. Catterall; Régis Pomès
Determination of a high-resolution 3D structure of voltage-gated sodium channel NaVAb opens the way to elucidating the mechanism of ion conductance and selectivity. To examine permeation of Na+ through the selectivity filter of the channel, we performed large-scale molecular dynamics simulations of NaVAb in an explicit, hydrated lipid bilayer at 0 mV in 150 mM NaCl, for a total simulation time of 21.6 μs. Although the cytoplasmic end of the pore is closed, reversible influx and efflux of Na+ through the selectivity filter occurred spontaneously during simulations, leading to equilibrium movement of Na+ between the extracellular medium and the central cavity of the channel. Analysis of Na+ dynamics reveals a knock-on mechanism of ion permeation characterized by alternating occupancy of the channel by 2 and 3 Na+ ions, with a computed rate of translocation of (6 ± 1) × 106 ions⋅s−1 that is consistent with expectations from electrophysiological studies. The binding of Na+ is intimately coupled to conformational isomerization of the four E177 side chains lining the extracellular end of the selectivity filter. The reciprocal coordination of variable numbers of Na+ ions and carboxylate groups leads to their condensation into ionic clusters of variable charge and spatial arrangement. Structural fluctuations of these ionic clusters result in a myriad of ion binding modes and foster a highly degenerate, liquid-like energy landscape propitious to Na+ diffusion. By stabilizing multiple ionic occupancy states while helping Na+ ions diffuse within the selectivity filter, the conformational flexibility of E177 side chains underpins the knock-on mechanism of Na+ permeation.
The Journal of General Physiology | 2016
Christopher A. Ahern; Jian Payandeh; Frank Bosmans; Baron Chanda
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Nature | 2015
Daniel Lafkas; Amy Shelton; Cecilia Chiu; Gladys de Leon Boenig; Yongmei Chen; Scott Stawicki; Christian Siltanen; Mike Reichelt; Meijuan Zhou; Xiumin Wu; Jeffrey Eastham-Anderson; Heather Moore; Meron Roose-Girma; Yvonne Chinn; Julie Q. Hang; Søren Warming; Jackson G. Egen; Wyne P. Lee; Cary D. Austin; Yan Wu; Jian Payandeh; John B. Lowe; Christian W. Siebel
Prevailing dogma holds that cell–cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.
Journal of Molecular Biology | 2015
Jian Payandeh; Daniel L. Minor
Voltage-gated sodium channels (Na(V)s) provide the initial electrical signal that drives action potential generation in many excitable cells of the brain, heart, and nervous system. For more than 60years, functional studies of Na(V)s have occupied a central place in physiological and biophysical investigation of the molecular basis of excitability. Recently, structural studies of members of a large family of bacterial voltage-gated sodium channels (BacNa(V)s) prevalent in soil, marine, and salt lake environments that bear many of the core features of eukaryotic Na(V)s have reframed ideas for voltage-gated channel function, ion selectivity, and pharmacology. Here, we analyze the recent advances, unanswered questions, and potential of BacNa(V)s as templates for drug development efforts.
The Journal of General Physiology | 2013
Tamer M. Gamal El-Din; Gilbert Q. Martinez; Jian Payandeh; Todd Scheuer; William A. Catterall
Voltage-gated sodium channels undergo slow inactivation during repetitive depolarizations, which controls the frequency and duration of bursts of action potentials and prevents excitotoxic cell death. Although homotetrameric bacterial sodium channels lack the intracellular linker-connecting homologous domains III and IV that causes fast inactivation of eukaryotic sodium channels, they retain the molecular mechanism for slow inactivation. Here, we examine the functional properties and slow inactivation of the bacterial sodium channel NavAb expressed in insect cells under conditions used for structural studies. NavAb activates at very negative membrane potentials (V1/2 of approximately −98 mV), and it has both an early phase of slow inactivation that arises during single depolarizations and reverses rapidly, and a late use-dependent phase of slow inactivation that reverses very slowly. Mutation of Asn49 to Lys in the S2 segment in the extracellular negative cluster of the voltage sensor shifts the activation curve ∼75 mV to more positive potentials and abolishes the late phase of slow inactivation. The gating charge R3 interacts with Asn49 in the crystal structure of NavAb, and mutation of this residue to Cys causes a similar positive shift in the voltage dependence of activation and block of the late phase of slow inactivation as mutation N49K. Prolonged depolarizations that induce slow inactivation also cause hysteresis of gating charge movement, which results in a requirement for very negative membrane potentials to return gating charges to their resting state. Unexpectedly, the mutation N49K does not alter hysteresis of gating charge movement, even though it prevents the late phase of slow inactivation. Our results reveal an important molecular interaction between R3 in S4 and Asn49 in S2 that is crucial for voltage-dependent activation and for late slow inactivation of NavAb, and they introduce a NavAb mutant that enables detailed functional studies in parallel with structural analysis.