Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian-Quan Ni is active.

Publication


Featured researches published by Jian-Quan Ni.


Nature Methods | 2011

A genome-scale shRNA resource for transgenic RNAi in Drosophila

Jian-Quan Ni; Rui Zhou; Benjamin Czech; Lu-Ping Liu; Laura Holderbaum; Donghui Yang-Zhou; Hye-Seok Shim; Rong Tao; Dominik Handler; Phillip Karpowicz; Richard Binari; Matthew Booker; Julius Brennecke; Lizabeth A. Perkins; Gregory J. Hannon; Norbert Perrimon

Existing transgenic RNAi resources in Drosophila melanogaster based on long double-stranded hairpin RNAs are powerful tools for functional studies, but they are ineffective in gene knockdown during oogenesis, an important model system for the study of many biological questions. We show that shRNAs, modeled on an endogenous microRNA, are extremely effective at silencing gene expression during oogenesis. We also describe our progress toward building a genome-wide shRNA resource.


Genetics | 2009

A Drosophila Resource of Transgenic RNAi Lines for Neurogenetics

Jian-Quan Ni; Lu-Ping Liu; Richard Binari; Robert W. Hardy; Hye-Seok Shim; Amanda Cavallaro; Matthew Booker; Barret D. Pfeiffer; Michele Markstein; Hui Wang; Christians Villalta; Todd R. Laverty; Lizabeth A. Perkins; Norbert Perrimon

Conditional expression of hairpin constructs in Drosophila is a powerful method to disrupt the activity of single genes with a spatial and temporal resolution that is impossible, or exceedingly difficult, using classical genetic methods. We previously described a method (Ni et al. 2008) whereby RNAi constructs are targeted into the genome by the phiC31-mediated integration approach using Vermilion-AttB-Loxp-Intron-UAS-MCS (VALIUM), a vector that contains vermilion as a selectable marker, an attB sequence to allow for phiC31-targeted integration at genomic attP landing sites, two pentamers of UAS, the hsp70 core promoter, a multiple cloning site, and two introns. As the level of gene activity knockdown associated with transgenic RNAi depends on the level of expression of the hairpin constructs, we generated a number of derivatives of our initial vector, called the “VALIUM” series, to improve the efficiency of the method. Here, we report the results from the systematic analysis of these derivatives and characterize VALIUM10 as the most optimal vector of this series. A critical feature of VALIUM10 is the presence of gypsy insulator sequences that boost dramatically the level of knockdown. We document the efficacy of VALIUM as a vector to analyze the phenotype of genes expressed in the nervous system and have generated a library of 2282 constructs targeting 2043 genes that will be particularly useful for studies of the nervous system as they target, in particular, transcription factors, ion channels, and transporters.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9

Xingjie Ren; Jin Sun; Benjamin E. Housden; Yanhui Hu; Charles Roesel; Shuailiang Lin; Lu-Ping Liu; Zhihao Yang; Decai Mao; Lingzhu Sun; Qujie Wu; Jun-Yuan Ji; Jianzhong Xi; Stephanie E. Mohr; Jiang Xu; Norbert Perrimon; Jian-Quan Ni

Significance Using the recently introduced Cas9/sgRNA technique, we have developed a method for specifically targeting Drosophila germ-line cells to generate heritable mutant alleles. We have established transgenic lines that stably express Cas9 in the germ line and compared different promoters and scaffolds of sgRNA in terms of their efficiency of mutagenesis. An overall mutagenesis rate of 74.2% was achieved with this optimized system, as determined by the number of mutant progeny out of all progeny screened. We also evaluated the off-targets associated with the method and established a Web-based resource, as well as a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Our results demonstrate that this optimized Cas9/sgRNA system in Drosophila is efficient, specific, and cost-effective and can be readily applied in a semi-high-throughput manner. The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.


Cold Spring Harbor Perspectives in Biology | 2010

In vivo RNAi: Today and Tomorrow

Norbert Perrimon; Jian-Quan Ni; Lizabeth A. Perkins

RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine.


Genetics | 2015

The Transgenic RNAi Project at Harvard Medical School: Resources and Validation

Lizabeth A. Perkins; Laura Holderbaum; Rong Tao; Yanhui Hu; Richelle Sopko; Kim McCall; Donghui Yang-Zhou; Ian Flockhart; Richard Binari; Hye-Seok Shim; Audrey Miller; Amy Housden; Marianna Foos; Sakara Randkelv; Colleen Kelley; Pema Namgyal; Christians Villalta; Lu-Ping Liu; Xia Jiang; Qiao Huan-Huan; Xia Wang; Asao Fujiyama; Atsushi Toyoda; Kathleen Ayers; Allison Blum; Benjamin Czech; Ralph A. Neumüller; Dong Yan; Amanda Cavallaro; Karen L. Hibbard

To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT–qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT–qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China).


Development | 2012

A genome-wide transgenic resource for conditional expression of Drosophila microRNAs

Fernando Bejarano; Diane Bortolamiol-Becet; Qi Dai; Kailiang Sun; Abil Saj; Yu-ting Chou; David R. Raleigh; Kevin Kim; Jian-Quan Ni; Hong Duan; Jr-Shiuan Yang; Tudor A. Fulga; David Van Vactor; Norbert Perrimon; Eric C. Lai

microRNAs (miRNAs) are endogenous short RNAs that mediate vast networks of post-transcriptional gene regulation. Although computational searches and experimental profiling provide evidence for hundreds of functional targets for individual miRNAs, such data rarely provide clear insight into the phenotypic consequences of manipulating miRNAs in vivo. We describe a genome-wide collection of 165 Drosophila miRNA transgenes and find that a majority induced specific developmental defects, including phenocopies of mutants in myriad cell-signaling and patterning genes. Such connections allowed us to validate several likely targets for miRNA-induced phenotypes. Importantly, few of these phenotypes could be predicted from computationally predicted target lists, thus highlighting the value of whole-animal readouts of miRNA activities. Finally, we provide an example of the relevance of these data to miRNA loss-of-function conditions. Whereas misexpression of several K box miRNAs inhibited Notch pathway activity, reciprocal genetic interaction tests with miRNA sponges demonstrated endogenous roles of the K box miRNA family in restricting Notch signaling. In summary, we provide extensive evidence that misexpression of individual miRNAs often induces specific mutant phenotypes that can guide their functional study. By extension, these data suggest that the deregulation of individual miRNAs in other animals may frequently yield relatively specific phenotypes during disease conditions.


Development | 2008

RNA interference screening in Drosophila primary cells for genes involved in muscle assembly and maintenance

Jianwu Bai; Richard Binari; Jian-Quan Ni; Marina Vijayakanthan; Hong-Sheng Li; Norbert Perrimon

To facilitate the genetic analysis of muscle assembly and maintenance, we have developed a method for efficient RNA interference (RNAi) in Drosophila primary cells using double-stranded RNAs (dsRNAs). First, using molecular markers, we confirm and extend the observation that myogenesis in primary cultures derived from Drosophila embryonic cells follows the same developmental course as that seen in vivo. Second, we apply this approach to analyze 28 Drosophila homologs of human muscle disease genes and find that 19 of them, when disrupted, lead to abnormal muscle phenotypes in primary culture. Third, from an RNAi screen of 1140 genes chosen at random, we identify 49 involved in late muscle differentiation. We validate our approach with the in vivo analyses of three genes. We find that Fermitin 1 and Fermitin 2, which are involved in integrin-containing adhesion structures, act in a partially redundant manner to maintain muscle integrity. In addition, we characterize CG2165, which encodes a plasma membrane Ca2+-ATPase, and show that it plays an important role in maintaining muscle integrity. Finally, we discuss how Drosophila primary cells can be manipulated to develop cell-based assays to model human diseases for RNAi and small-molecule screens.


Nature | 2014

Protein competition switches the function of COP9 from self-renewal to differentiation

Lei Pan; Su Wang; Tinglin Lu; Changjiang Weng; Xiaoqing Song; Joseph K. Park; Jin Sun; Zhihao Yang; Junjing Yu; Hong Tang; Dennis M. McKearin; Daniel A. Chamovitz; Jian-Quan Ni; Ting Xie

The balance between stem cell self-renewal and differentiation is controlled by intrinsic factors and niche signals. In the Drosophila melanogaster ovary, some intrinsic factors promote germline stem cell (GSC) self-renewal, whereas others stimulate differentiation. However, it remains poorly understood how the balance between self-renewal and differentiation is controlled. Here we use D. melanogaster ovarian GSCs to demonstrate that the differentiation factor Bam controls the functional switch of the COP9 complex from self-renewal to differentiation via protein competition. The COP9 complex is composed of eight Csn subunits, Csn1–8, and removes Nedd8 modifications from target proteins. Genetic results indicated that the COP9 complex is required intrinsically for GSC self-renewal, whereas other Csn proteins, with the exception of Csn4, were also required for GSC progeny differentiation. Bam-mediated Csn4 sequestration from the COP9 complex via protein competition inactivated the self-renewing function of COP9 and allowed other Csn proteins to promote GSC differentiation. Therefore, this study reveals a protein-competition-based mechanism for controlling the balance between stem cell self-renewal and differentiation. Because numerous self-renewal factors are ubiquitously expressed throughout the stem cell lineage in various systems, protein competition may function as an important mechanism for controlling the self-renewal-to-differentiation switch.


Journal of Genetics and Genomics | 2015

A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila

Jiang Xu; Xingjie Ren; Jin Sun; Xia Wang; Huan-Huan Qiao; Bo-Wen Xu; Lu-Ping Liu; Jian-Quan Ni

The last couple of years have witnessed an explosion in development of CRISPR-based genome editing technologies in cell lines as well as in model organisms. In this review, we focus on the applications of this popular system in Drosophila. We discuss the effectiveness of the CRISPR/Cas9 systems in terms of delivery, mutagenesis detection, parameters affecting efficiency, and off-target issues, with an emphasis on how to apply this powerful tool to characterize gene functions.


G3: Genes, Genomes, Genetics | 2014

Performance of the Cas9 Nickase System in Drosophila melanogaster

Xingjie Ren; Zhihao Yang; Decai Mao; Zai Chang; Huan-Huan Qiao; Xia Wang; Jin Sun; Qun Hu; Yan Cui; Lu-Ping Liu; Jun-Yuan Ji; Jiang Xu; Jian-Quan Ni

Recent studies of the Cas9/sgRNA system in Drosophila melanogaster genome editing have opened new opportunities to generate site-specific mutant collections in a high-throughput manner. However, off-target effects of the system are still a major concern when analyzing mutant phenotypes. Mutations converting Cas9 to a DNA nickase have great potential for reducing off-target effects in vitro. Here, we demonstrated that injection of two plasmids encoding neighboring offset sgRNAs into transgenic Cas9D10A nickase flies efficiently produces heritable indel mutants. We then determined the effective distance between the two sgRNA targets and their orientations that affected the ability of the sgRNA pairs to generate mutations when expressed in the transgenic nickase flies. Interestingly, Cas9 nickase greatly reduces the ability to generate mutants with one sgRNA, suggesting that the application of Cas9 nickase and sgRNA pairs can almost avoid off-target effects when generating indel mutants. Finally, a defined piwi mutant allele is generated with this system through homology-directed repair. However, Cas9D10A is not as effective as Cas9 in replacing the entire coding sequence of piwi with two sgRNAs.

Collaboration


Dive into the Jian-Quan Ni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ting Xie

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge