Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian Ren Shen is active.

Publication


Featured researches published by Jian Ren Shen.


Nature | 2011

Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A

Y. Umena; Keisuke Kawakami; Jian Ren Shen; Nobuo Kamiya

Photosystem II is the site of photosynthetic water oxidation and contains 20 subunits with a total molecular mass of 350 kDa. The structure of photosystem II has been reported at resolutions from 3.8 to 2.9 Å. These resolutions have provided much information on the arrangement of protein subunits and cofactors but are insufficient to reveal the detailed structure of the catalytic centre of water splitting. Here we report the crystal structure of photosystem II at a resolution of 1.9 Å. From our electron density map, we located all of the metal atoms of the Mn4CaO5 cluster, together with all of their ligands. We found that five oxygen atoms served as oxo bridges linking the five metal atoms, and that four water molecules were bound to the Mn4CaO5 cluster; some of them may therefore serve as substrates for dioxygen formation. We identified more than 1,300 water molecules in each photosystem II monomer. Some of them formed extensive hydrogen-bonding networks that may serve as channels for protons, water or oxygen molecules. The determination of the high-resolution structure of photosystem II will allow us to analyse and understand its functions in great detail.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution

Nobuo Kamiya; Jian Ren Shen

Photosystem II (PSII) is a multisubunit membrane protein complex performing light-induced electron transfer and water-splitting reactions, leading to the formation of molecular oxygen. The first crystal structure of PSII from a thermophilic cyanobacterium Thermosynechococcus elongatus was reported recently [Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Saenger, W. & Orth, P. (2001) Nature 409, 739–743)] at 3.8-Å resolution. To analyze the PSII structure in more detail, we have obtained the crystal structure of PSII from another thermophilic cyanobacterium, Thermosynechococcus vulcanus, at 3.7-Å resolution. The present structure was built on the basis of the sequences of PSII large subunits D1, D2, CP47, and CP43; extrinsic 33- and 12-kDa proteins and cytochrome c550; and several low molecular mass subunits, among which the structure of the 12-kDa protein was not reported previously. This yielded much information concerning the molecular interactions within this large protein complex. We also show the arrangement of chlorophylls and cofactors, including two β-carotenes recently identified in a region close to the reaction center, which provided important clues to the secondary electron transfer pathways around the reaction center. Furthermore, possible ligands for the Mn-cluster were determined. In particular, the C terminus of D1 polypeptide was shown to be connected to the Mn cluster directly. The structural information obtained here provides important insights into the mechanism of PSII reactions.


Science | 2015

A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis

Chunxi Zhang; Changhui Chen; Hongxing Dong; Jian Ren Shen; Holger Dau; Jingquan Zhao

Mimicking the oxygen evolution center Making a synthetic analog of plant photosynthesis is a key goal for exploiting solar energy and replacing fossil fuels. Zhang et al. synthesized a manganese-calcium cluster that looks and acts like the oxygen evolution center in photosystem II (see the Perspective by Sun). The mimic structurally resembles the biological complex, with the notable exception of bridging protein ligands and water-binding sites on a dangling Mn atom. Functionally, however, the clusters metal center readily undergoes four redox transitions, which contribute to splitting water into oxygen. This and other synthetic mimics will pave the way for developing more efficient catalysts for artificial photosynthesis. Science, this issue p. 690; see also p. 635 A synthetic analog could help shed light on the molecular tools plants use to make oxygen. [Also see Perspective by Sun] Photosynthetic splitting of water into oxygen by plants, algae, and cyanobacteria is catalyzed by the oxygen-evolving center (OEC). Synthetic mimics of the OEC, which is composed of an asymmetric manganese-calcium-oxygen cluster bound to protein groups, may promote insight into the structural and chemical determinants of biological water oxidation and lead to development of superior catalysts for artificial photosynthesis. We synthesized a Mn4Ca-cluster similar to the native OEC in both the metal-oxygen core and the binding protein groups. Like the native OEC, the synthetic cluster can undergo four redox transitions and shows two magnetic resonance signals assignable to redox and structural isomerism. Comparison with previously synthesized Mn3CaO4-cubane clusters suggests that the fourth Mn ion determines redox potentials and magnetic properties of the native OEC.


Biochemistry | 2011

S1-State Model of the O2-Evolving Complex of Photosystem II

Sandra Luber; Ivan Rivalta; Yasufumi Umena; Keisuke Kawakami; Jian Ren Shen; Nobuo Kamiya; Gary W. Brudvig; Victor S. Batista

We introduce a quantum mechanics/molecular mechanics model of the oxygen-evolving complex of photosystem II in the S(1) Mn(4)(IV,III,IV,III) state, where Ca(2+) is bridged to manganese centers by the carboxylate moieties of D170 and A344 on the basis of the new X-ray diffraction (XRD) model recently reported at 1.9 Å resolution. The model is also consistent with high-resolution spectroscopic data, including polarized extended X-ray absorption fine structure data of oriented single crystals. Our results provide refined intermetallic distances within the Mn cluster and suggest that the XRD model most likely corresponds to a mixture of oxidation states, including species more reduced than those observed in the catalytic cycle of water splitting.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography

Keisuke Kawakami; Yasufumi Umena; Nobuo Kamiya; Jian Ren Shen

The chloride ion, Cl−, is an essential cofactor for oxygen evolution of photosystem II (PSII) and is closely associated with the Mn4Ca cluster. Its detailed location and function have not been identified, however. We substituted Cl− with a bromide ion (Br−) or an iodide ion (I−) in PSII and analyzed the crystal structures of PSII with Br− and I− substitutions. Substitution of Cl− with Br− did not inhibit oxygen evolution, whereas substitution of Cl− with I− completely inhibited oxygen evolution, indicating the efficient replacement of Cl− by I−. PSII with Br− and I− substitutions were crystallized, and their structures were analyzed. The results showed that there are 2 anion-binding sites in each PSII monomer; they are located on 2 sides of the Mn4Ca cluster at equal distances from the metal cluster. Anion-binding site 1 is close to the main chain of D1-Glu-333, and site 2 is close to the main chain of CP43-Glu-354; these 2 residues are coordinated directly with the Mn4Ca cluster. In addition, site 1 is located in the entrance of a proton exit channel. These results indicate that these 2 Cl− anions are required to maintain the coordination structure of the Mn4Ca cluster as well as the proposed proton channel, thereby keeping the oxygen-evolving complex fully active.


Chemical Reviews | 2016

Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures

Mohammad Mahdi Najafpour; Gernot Renger; Małgorzata Hołyńska; Atefeh Nemati Moghaddam; Eva-Mari Aro; Robert Carpentier; Hiroshi Nishihara; Julian J. Eaton-Rye; Jian Ren Shen; Suleyman I. Allakhverdiev

All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.


Science | 2015

Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex

Xiaochun Qin; Michihiro Suga; Tingyun Kuang; Jian Ren Shen

Photosystem I enters into the spotlight Plants rely on large complexes of proteins, chlorophyll, and other cofactors to turn light into chemical energy. Qin et al. present the crystal structures of photosystem I (PSI) and the light-harvesting complex I (LHCI) supercomplex from pea plants (see the Perspective by Croce). The well-resolved structure of the outer antenna complexes and their interaction with the PSI core provide a structural basis for calculating excitation energy transfer efficiency. Moreover, the organization and orientation of chlorophyll and carotenoid cofactors within and between PSI and LHCI hint at energy transfer and photoprotection mechanisms. Science, this issue p. 989; see also p. 970 The structure of the photosynthetic light-harvesting complex from pea suggests how light is converted into chemical energy. [Also see Perspective by Croce] Photosynthesis converts solar energy to chemical energy by means of two large pigment-protein complexes: photosystem I (PSI) and photosystem II (PSII). In higher plants, the PSI core is surrounded by a large light-harvesting complex I (LHCI) that captures sunlight and transfers the excitation energy to the core with extremely high efficiency. We report the structure of PSI-LHCI, a 600-kilodalton membrane protein supercomplex, from Pisum sativum (pea) at a resolution of 2.8 angstroms. The structure reveals the detailed arrangement of pigments and other cofactors—especially within LHCI—as well as numerous specific interactions between the PSI core and LHCI. These results provide a firm structural basis for our understanding on the energy transfer and photoprotection mechanisms within the PSI-LHCI supercomplex.


Journal of Photochemistry and Photobiology B-biology | 2011

Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution.

Keisuke Kawakami; Yasufumi Umena; Nobuo Kamiya; Jian Ren Shen

The catalytic center for photosynthetic water-splitting consists of 4 Mn atoms and 1 Ca atom and is located near the lumenal surface of photosystem II. So far the structure of the Mn(4)Ca-cluster has been studied by a variety of techniques including X-ray spectroscopy and diffraction, and various structural models have been proposed. However, its exact structure is still unknown due to the limited resolution of crystal structures of PSII achieved so far, as well as possible radiation damages that might have occurred. Very recently, we have succeeded in solving the structure of photosystem II at 1.9 Å, which yielded a detailed picture of the Mn(4)CaO(5)-cluster for the first time. In the high resolution structure, the Mn(4)CaO(5)-cluster is arranged in a distorted chair form, with a cubane-like structure formed by 3 Mn and 1 Ca, 4 oxygen atoms as the distorted base of the chair, and 1 Mn and 1 oxygen atom outside of the cubane as the back of the chair. In addition, four water molecules were associated with the cluster, among which, two are associated with the terminal Mn atom and two are associated with the Ca atom. Some of these water molecules may therefore serve as the substrates for water-splitting. The high resolution structure of the catalytic center provided a solid basis for elucidation of the mechanism of photosynthetic water splitting. We review here the structural features of the Mn(4)CaO(5)-cluster analyzed at 1.9 Å resolution, and compare them with the structures reported previously.


Nature Methods | 2014

Determination of damage-free crystal structure of an X-ray–sensitive protein using an XFEL

Kunio Hirata; Kyoko Shinzawa-Itoh; Naomine Yano; Shuhei Takemura; Koji Kato; Miki Hatanaka; Kazumasa Muramoto; Takako Kawahara; Tomitake Tsukihara; Eiki Yamashita; Kensuke Tono; Go Ueno; Takaaki Hikima; Hironori Murakami; Yuichi Inubushi; Makina Yabashi; Tetsuya Ishikawa; Masaki Yamamoto; Takashi Ogura; Hiroshi Sugimoto; Jian Ren Shen; Shinya Yoshikawa; Hideo Ago

We report a method of femtosecond crystallography for solving radiation damage–free crystal structures of large proteins at sub-angstrom spatial resolution, using a large single crystal and the femtosecond pulses of an X-ray free-electron laser (XFEL). We demonstrated the performance of the method by determining a 1.9-Å radiation damage–free structure of bovine cytochrome c oxidase, a large (420-kDa), highly radiation-sensitive membrane protein.


FEBS Letters | 1992

Stoichiometric association of extrinsic cytochrome c550 and 12 kDa protein with a highly purified oxygen-evolving photosystem II core complex from Synechococcus vulcanus

Jian Ren Shen; Masahiko Ikeuchi; Yorinao Inoue

A highly purified, native photosystem II (PS II) core complex was isolated from thylakoids of Synechococcus vulcanus, a thermophilic cyanobacterium by lauryldimethylamine N‐oxide (LDAO) and dodecylβ‐d‐maltoside solubilization. This native PS II core complex contained, in addition to the proteins that have been well characterized in the core complex previously purified by LDAO and Triton X‐100, two more extrinsic proteins with apparent molecular weights of 17 and 12 kDa. These two proteins were associated with the core complex in stoichiometric amounts and could be released by treatment with 1 M CaCl2 or 1 M alkaline Tris but not by 2 M NaCl or low‐glycerol treatment, indicating that they are the real components of Ps II of this cyanobacterium. N‐Terminal sequencing revealed that the 17 and 12 kDa proteins correspond to the apoprotein of cytochrome c 550, a low potential c‐type cytochrome, and the 9 kDa extrinsic protein previously found in a partially purified PS II preparation from Phormidium laminosum, respectively. In spite of retention of these two extrinsic proteins, no homologues of higher plant 23 and 17 kDa extrinsic proteins could be detected in this cyanobacterial PS II core complex.

Collaboration


Dive into the Jian Ren Shen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isao Enami

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge