Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian-Sheng Lin is active.

Publication


Featured researches published by Jian-Sheng Lin.


Neuropharmacology | 1988

Evidence for histaminergic arousal mechanisms in the hypothalamus of cat

Jian-Sheng Lin; Kazuya Sakai; Michel Jouvet

Polygraphic 23-hr recordings were carried out in 25 adult cats in order to examine the effects of both systemic and local injections of various histaminergic and antihistaminergic drugs on sleep-waking cycles. alpha-Fluoromethylhistidine (alpha-FMH), a specific inhibitor of histidine decarboxylase, when injected intraperitoneally at a dose of 20 mg/kg, induced a significant increase in deep slow wave sleep (S2) and a decrease in wakefulness (W), without modifying light slow wave sleep (S1) and paradoxical sleep (PS). Intraperitoneal injections of mepyramine (1 mg and 5 mg/kg), a well-known histamine H1-receptor antagonist, increased deep slow wave sleep and decreased wakefulness, as well as paradoxical sleep. Bilateral injections of alpha-FMH (50 micrograms/1 microliter) into the ventrolateral posterior hypothalamus, where histamine immunoreactive neurones have been recently identified, resulted in a significant decrease in wakefulness and increase in deep slow wave sleep. Similarly, injections of mepyramine (120 micrograms/1 microliter) in the same structures caused a significant decrease in wakefulness and an increase in deep slow wave and paradoxical sleep as well. In contrast, local injections of SKF-91488 (50 micrograms/1 microliter), a specific inhibitor of histamine-N-methyltransferase, led to a significant increase in wakefulness and decrease in both slow wave sleep (SWS) and paradoxical sleep. Injections of histamine, at doses of 5, 30 and 60 micrograms/1 microliter, also increased wakefulness and decreased slow wave sleep dose dependently, while these effects were completely blocked by pretreatment with mepyramine. The results suggest that histaminergic systems in the hypothalamus play an important role in arousal mechanisms and their actions are mediated through H1-receptors.


Brain Research | 1989

A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats

Jian-Sheng Lin; Kazuya Sakai; G. Vanni-Mercier; Michel Jouvet

In order to determine critical sites within the hypothalamus responsible for the induction and maintenance of wakefulness (W), we performed microinjections of muscimol, a potent gamma-aminobutyric acid (GABA) agonist, in various lateral hypothalamic regions of freely moving cats. We found that bilateral injections of a small amount of muscimol (0.1-1.0 micrograms/0.5 microliters) in the preoptic and anterior hypothalamus and rostral mesencephalic tegmentum resulted in increased vigilance and insomnia. In contrast, microinjections of muscimol in the middle and anterior parts of the posterior hypothalamus induced long-lasting behavioral and electroencephalographic signs of sleep with short latency. The hypersomnia was characterized by a significant increase in both light and deep slow wave sleep (SWS), and a nearly complete suppression of paradoxical sleep (PS). Animals with muscimol microinjections in the ventrolateral part of the posterior hypothalamus, however, exhibited increased SWS followed by a significant increase in PS. When injected into the posterior hypothalamus of insomniac cats pretreated with p-chlorophenylalanine (PCPA), muscimol induced not only SWS but also PS with short latency. The present data thus support the hypotheses that the posterior hypothalamus plays a critical role in the mechanisms of W and that sleep might result from functional blockade of the hypothalamic waking center.


The Journal of Neuroscience | 2006

Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse.

Kazumi Takahashi; Jian-Sheng Lin; Kazuya Sakai

Using extracellular single-unit recordings alone and in combination with neurobiotin juxtacellular labeling and histamine immunohistochemistry, we have identified, for the first time in nonanesthetized, head-restrained mice, histamine neurons in the tuberomammillary nuclei of the posterior hypothalamus. They are all characterized by triphasic broad action potentials. They are active only during wakefulness, and their activity is related to a high level of vigilance. During waking states, they display a slow (<10 Hz) tonic, repetitive, irregular firing pattern. Their activity varies in the different waking states, being lowest during quiet waking, moderate during active waking, and highest during attentive waking. They cease firing during quiet waking before the onset of EEG synchronization, the EEG sign of sleep (drowsy state), and remain silent during slow-wave sleep and paradoxical (or rapid eye movement) sleep. They exhibit a pronounced delay in firing during transitions from sleep to wakefulness or remain quiescent during the same transitions if the animals are not fully alert. They either respond with a long delay, or do not respond, to an arousing stimulus if the stimulus does not elicit an overt alert state. These data support the view that the activity of histaminergic tuberomammillary neurons plays an important role, not in the induction of wakefulness per se, but in the maintenance of the high level of vigilance necessary for cognitive processes. Conversely, cessation of their activity may play an important role in both the initiation and maintenance of sleep.


Brain Research | 1990

Involvement of histaminergic neurons in arousal mechanisms demonstrated with H3-receptor ligands in the cat

Jian-Sheng Lin; Kazuya Sakai; G. Vanni-Mercier; Jean-Michel Arrang; Monique Garbarg; Jean-Charles Schwartz; Michel Jouvet

The effects of histamine H3-receptor ligands on sleep-waking parameters were studied in freely moving cats. Oral administration of (R)alpha-methylhistamine (alpha MHA), a H3-agonist, caused a significant increase in deep slow wave sleep while that of thioperamide, a H3-antagonist, enhanced wakefulness in a marked and dose-dependent manner. The arousal effects of thioperamide were prevented by pretreatment with alpha MHA or mepyramine, a H1-receptor antagonist. The findings support the hypothesis that the histaminergic neurons are critically involved in arousal mechanisms and suggest that H3-receptors play an active part in these mechanisms by regulating histamine transmission.


Brain Research | 1992

Role of catecholamines in the modafinil and amphetamine induced wakefulness, a comparative pharmacological study in the cat

Jian-Sheng Lin; B. Roussel; H. Akaoka; Patrice Fort; G. Debilly; Michel Jouvet

Seventeen adult cats were chronically implanted with electrodes for polygraphic recordings in order to assess the role of catecholamines in the arousal effects of oral administrations of modafinil, a presumed noradrenergic agonist, and amphetamine, a well-known catecholamine-releasing agent. Whereas both modafinil (1, 2.5 and 5 mg/kg) and amphetamine (0.25, 0.5 and 1 mg/kg) caused a significant and dose-dependent increase in wakefulness and brain temperature, amphetamine, but not modafinil, elicited marked signs of behavioral excitation. Pretreatments with alpha-methyl-DL-p-tyrosine methyl ester (50 mg/kg, i.p.), an inhibitor of catecholamine synthesis, almost completely prevented the effects of amphetamine (0.25 and 1 mg/kg), but only slightly reduced the duration of the waking effect of modafinil (2.5 and 5 mg/kg). Pretreatments with phentolamine (10 mg/kg, i.p.), prazosin (1.5 mg/kg, per os) and propranolol (5 mg/kg, i.p.), an alpha-, alpha 1- and beta-receptor antagonist, respectively, attenuated significantly the arousal effect of modafinil (1 mg/kg, the same as below) but not of amphetamine (0.25 mg/kg, the same as below). Intraperitoneal injections of haloperidol (0.5 mg/kg), a dopamine-receptor antagonist, blocked significantly the arousal of amphetamine but not of modafinil. The effects of both modafinil and amphetamine were enhanced by a pretreatment with yohimbine (1 mg/kg, i.p.), an alpha 2-receptor antagonist. These results suggest that the arousal effect of modafinil does not depend on the availability of the endogenous catecholamines but results from an enhancement of alpha 1- and beta-receptor activity and that the waking and behavioral effects of amphetamine may be mainly due to an increase in dopamine release.


Neurobiology of Disease | 2008

An inverse agonist of the histamine H3 receptor improves wakefulness in narcolepsy: Studies in orexin−/− mice and patients

Jian-Sheng Lin; Yves Dauvilliers; Isabelle Arnulf; Hélène Bastuji; Christelle Anaclet; Régis Parmentier; Laurence Kocher; Masashi Yanagisawa; Philippe Lehert; Xavier Ligneau; David Perrin; Philippe Robert; Michel Roux; Jeanne Marie Lecomte; Jean Schwartz

Narcolepsy is characterized by excessive daytime sleepiness (EDS), cataplexy, direct onsets of rapid eye movement (REM) sleep from wakefulness (DREMs) and deficiency of orexins, neuropeptides that promote wakefulness largely via activation of histamine (HA) pathways. The hypothesis that the orexin defect can be circumvented by enhancing HA release was explored in narcoleptic mice and patients using tiprolisant, an inverse H(3)-receptor agonist. In narcoleptic orexin(-/-) mice, tiprolisant enhanced HA and noradrenaline neuronal activity, promoted wakefulness and decreased abnormal DREMs, all effects being amplified by co-administration of modafinil, a currently-prescribed wake-promoting drug. In a pilot single-blind trial on 22 patients receiving a placebo followed by tiprolisant, both for 1 week, the Epworth Sleepiness Scale (ESS) score was reduced from a baseline value of 17.6 by 1.0 with the placebo (p>0.05) and 5.9 with tiprolisant (p<0.001). Excessive daytime sleep, unaffected under placebo, was nearly suppressed on the last days of tiprolisant dosing. H(3)-receptor inverse agonists could constitute a novel effective treatment of EDS, particularly when associated with modafinil.


Neuroscience | 2008

Neuronal activity of orexin and non-orexin waking-active neurons during wake–sleep states in the mouse

K. Takahashi; Jian-Sheng Lin; Kazuya Sakai

Using extracellular single unit recordings alone or in combination with neurobiotin juxtacellular labeling and orexin (hypocretin) immunohistochemistry in the mouse, we have recorded a total of 452 neurons in the orexin neuron field of the posterior hypothalamus. Of these, 76 exhibited tonic discharge highly specific to wakefulness, referred to as waking-active neurons. They showed differences from each other in terms of spike shape, activity profile, and response to an arousing sound stimulus and could be classified into three groups on the basis of spike shape as: 1) biphasic broad; 2) biphasic narrow; and 3) triphasic. Waking-active neurons characterized by biphasic broad spikes were orexin-immunopositive, whereas those characterized by either biphasic narrow or triphasic broad spikes were orexin-immunonegative. Unlike waking-specific histamine neurons, all orexin and non-orexin waking-active neurons exhibited slow (<10 Hz) tonic discharges during wakefulness and ceased firing shortly after the onset of electroencephalogram (EEG) synchronization (deactivation), the EEG sign of sleep (drowsy state). They remained virtually silent during slow-wave sleep, but displayed transient discharges during paradoxical (or rapid eye movement) sleep. During the transition from sleep to wakefulness, both orexin and triphasic non-orexin neurons fired in clusters prior to the onset of EEG activation, the EEG sign of wakefulness, and responded with a short latency to an arousing sound stimulus given during sleep. In contrast, the biphasic narrow non-orexin neurons fired in single spikes either prior to, or after, EEG activation during the same transition and responded to the stimulus with a longer latency. The activity of all waking-active neurons preceded the return of muscle tonus at the transition from paradoxical sleep to wakefulness. These data support the view that the activity of orexin and non-orexin waking-active neurons in the posterior hypothalamus plays an important wake-promoting role and that their activity antagonizes cortical deactivation and loss of muscle tone.


The Journal of Neuroscience | 2009

Orexin/Hypocretin and Histamine: Distinct Roles in the Control of Wakefulness Demonstrated Using Knock-Out Mouse Models

Christelle Anaclet; Régis Parmentier; Koliane Ouk; Gérard Guidon; Colette Buda; Jean Pierre Sastre; Hideo Akaoka; Olga A. Sergeeva; Masashi Yanagisawa; Hiroshi Ohtsu; Patricia Franco; Helmut L. Haas; Jian-Sheng Lin

To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep–wake phenotypes of orexin (Ox) knock-out (−/−) mice and compared them with those of histidine-decarboxylase (HDC, HA-synthesizing enzyme)−/− mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep (PS), they presented a number of marked differences: (1) the PS increase in HDC−/− mice was seen during lightness, whereas that in Ox−/− mice occurred during darkness; (2) contrary to HDC−/−, Ox−/− mice had no W deficiency around lights-off, nor an abnormal EEG and responded to a new environment with increased W; (3) only Ox−/−, but not HDC−/− mice, displayed narcolepsy and deficient W when faced with motor challenge. Thus, when placed on a wheel, wild-type (WT), but not littermate Ox−/− mice, voluntarily spent their time in turning it and as a result, remained highly awake; this was accompanied by dense c-fos expression in many areas of their brains, including Ox neurons in the dorsolateral hypothalamus. The W and motor deficiency of Ox−/− mice was due to the absence of Ox because intraventricular dosing of orexin-A restored their W amount and motor performance whereas SB-334867 (Ox1-receptor antagonist, i.p.) impaired W and locomotion of WT mice during the test. These data indicate that Ox, but not HA, promotes W through enhanced locomotion and suggest that HA and Ox neurons exert a distinct, but complementary and synergistic control of W: the neuropeptide being more involved in its behavioral aspects, whereas the amine is mainly responsible for its qualitative cognitive aspects and cortical EEG activation.


Journal of Pharmacology and Experimental Therapeutics | 2006

BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride], a nonimidazole inverse agonist/antagonist at the human histamine H3 receptor: Preclinical pharmacology.

Xavier Ligneau; David Perrin; Laurent Landais; Jean-Claude Camelin; Thierry Calmels; Isabelle Berrebi-Bertrand; Jeanne-Marie Lecomte; Régis Parmentier; Christelle Anaclet; Jian-Sheng Lin; Valerie Bertaina-Anglade; C. Drieu la Rochelle; F. d'Aniello; A. Rouleau; Florence Gbahou; J.-M. Arrang; C. R. Ganellin; Holger Stark; Walter Schunack; Jean-Charles Schwartz

Histamine H3 receptor inverse agonists are known to enhance the activity of histaminergic neurons in brain and thereby promote vigilance and cognition. 1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride (BF2.649) is a novel, potent, and selective nonimidazole inverse agonist at the recombinant human H3 receptor. On the stimulation of guanosine 5′-O-(3-[35S]thio)triphosphate binding to this receptor, BF2.649 behaved as a competitive antagonist with a Ki value of 0.16 nM and as an inverse agonist with an EC50 value of 1.5 nM and an intrinsic activity ∼50% higher than that of ciproxifan. Its in vitro potency was ∼6 times lower at the rodent receptor. In mice, the oral bioavailability coefficient, i.e., the ratio of plasma areas under the curve after oral and i.v. administrations, respectively, was 84%. BF2.649 dose dependently enhanced tele-methylhistamine levels in mouse brain, an index of histaminergic neuron activity, with an ED50 value of 1.6 mg/kg p.o., a response that persisted after repeated administrations for 17 days. In rats, the drug enhanced dopamine and acetylcholine levels in microdialysates of the prefrontal cortex. In cats, it markedly enhanced wakefulness at the expense of sleep states and also enhanced fast cortical rhythms of the electroencephalogram, known to be associated with improved vigilance. On the two-trial object recognition test in mice, a promnesiant effect was shown regarding either scopolamine-induced or natural forgetting. These preclinical data suggest that BF2.649 is a valuable drug candidate to be developed in wakefulness or memory deficits and other cognitive disorders.


Journal of Pharmacology and Experimental Therapeutics | 2006

BF2.649, A NON-IMIDAZOLE INVERSE AGONIST/ANTAGONIST AT THE HUMAN HISTAMINE H3 RECEPTOR: PRECLINICAL PHARMACOLOGY

Xavier Ligneau; David Perrin; Laurent Landais; Jean-Claude Camelin; Thierry Calmels; Isabelle Berrebi-Bertrand; Jeanne-Marie Lecomte; Régis Parmentier; Christelle Anaclet; Jian-Sheng Lin; Valerie Bertaina-Anglade; Christophe Drieu La Rochelle; Fabiana d'Aniello; A. Rouleau; Florence Gbahou; Jean-Michel Arrang; Robin Ganellin; Holger Stark; Walter Schunack; Jean-Charles Schwartz

Histamine H3 receptor inverse agonists are known to enhance the activity of histaminergic neurons in brain and thereby promote vigilance and cognition. 1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride (BF2.649) is a novel, potent, and selective nonimidazole inverse agonist at the recombinant human H3 receptor. On the stimulation of guanosine 5′-O-(3-[35S]thio)triphosphate binding to this receptor, BF2.649 behaved as a competitive antagonist with a Ki value of 0.16 nM and as an inverse agonist with an EC50 value of 1.5 nM and an intrinsic activity ∼50% higher than that of ciproxifan. Its in vitro potency was ∼6 times lower at the rodent receptor. In mice, the oral bioavailability coefficient, i.e., the ratio of plasma areas under the curve after oral and i.v. administrations, respectively, was 84%. BF2.649 dose dependently enhanced tele-methylhistamine levels in mouse brain, an index of histaminergic neuron activity, with an ED50 value of 1.6 mg/kg p.o., a response that persisted after repeated administrations for 17 days. In rats, the drug enhanced dopamine and acetylcholine levels in microdialysates of the prefrontal cortex. In cats, it markedly enhanced wakefulness at the expense of sleep states and also enhanced fast cortical rhythms of the electroencephalogram, known to be associated with improved vigilance. On the two-trial object recognition test in mice, a promnesiant effect was shown regarding either scopolamine-induced or natural forgetting. These preclinical data suggest that BF2.649 is a valuable drug candidate to be developed in wakefulness or memory deficits and other cognitive disorders.

Collaboration


Dive into the Jian-Sheng Lin's collaboration.

Top Co-Authors

Avatar

Helmut L. Haas

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Groswasser

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Enza Montemitro

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

André Kahn

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Sonia Scaillet

Free University of Brussels

View shared research outputs
Top Co-Authors

Avatar

F. Bat-Pitault

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge