Jian-Wen Tan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jian-Wen Tan.
Molecules | 2010
Jian Yan; Hai-Hong Bi; Yong-Zhu Liu; Mei Zhang; Zhong-Yu Zhou; Jian-Wen Tan
A bioassay-directed phytochemical study was carried out to investigate potential allelochemicals of the invasive plant Merremia umbellata subsp. orientalis (Hall. f.). Eight phenolic compounds, including a salicylic acid (SA)-derived new natural product, SA 2-O-β-D-(3′,6′-dicaffeoyl)-glucopyranoside (1), and seven known ones 2-8 were isolated and identified from two bioactive sub-fractions of the acetone extract of this plant. The structure of new compound 1 was established by spectral and chemical methods. The potential allelopathic effects of these compounds at 0.5 and 1.0 mM concentrations on the germination of Arabidopsis seeds were tested. Results showed that 2 remarkably inhibited seed germination at concentrations as low as 0.5 mM. Compound 3 only moderately inhibited seed germination at 0.5 mM, but displayed strong inhibitory bioactivity at 1.0 mM concentration. Compounds 4 and 5 showed only slight inhibitory bioactivity at 1.0 mM, while the other compounds showed no obvious inhibitory effects.
Molecules | 2013
Mei Zhang; Wan-Xue Liu; Meng-Fei Zheng; Qiao-Lin Xu; Fang-Hao Wan; Jing Wang; Ting Lei; Zhong-Yu Zhou; Jian-Wen Tan
A novel quinic acid derivative, 5-O-trans-o-coumaroylquinic acid methyl ester (1), together with three known ones, chlorogenic acid methyl ester (2), macranthoin F (3) and macranthoin G (4), were isolated from the aerial parts of the invasive plant Ageratina adenophora (Spreng.). The structure of new compound 1 was elucidated on the basis of extensive spectroscopic analysis, including 1D- and 2D-NMR techniques. Compounds 2–4 were isolated from plant A. adenophora for the first time. All the compounds showed in vitro antibacterial activity toward five assayed bacterial strains, especially 3 and 4, which showed in vitro antibacterial activity against Salmonella enterica with MIC values of 7.4 and 14.7 μM, respectively. Compound 1 was further found to display in vitro anti-fungal activity against spore germination of Magnaporthe grisea with an IC50 value 542.3 µM. These four compounds were also tested for their antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical.
Journal of Agricultural and Food Chemistry | 2013
Zhong-Yu Zhou; Wan-Xue Liu; Gang Pei; Hui Ren; Jing Wang; Qiao-Lin Xu; Hai-Hui Xie; Fang-Hao Wan; Jian-Wen Tan
A bioassay-directed phytochemical study was conducted to investigate potential allelochemicals in the roots of the invasive plant Ageratina adenophora. Eleven phenolic compounds, including seven new ones, 7-hydroxy-8,9-dehydrothymol 9-O-trans-ferulate (1), 7-hydroxythymol 9-O-trans-ferulate (2), 7,8-dihydroxythymol 9-O-trans-ferulate (3), 7,8-dihydroxythymol 9-O-cis-ferulate (4), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-trans-p-coumarate (5), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-cis-p-coumarate (6), and 3-(2-hydroxyphenyl)propyl methyl malonate (7), were isolated from a bioactive subfraction of the ethanol extract of the roots of A. adenophora. The new structures were established on the basis of detailed spectroscopic analysis. The potential phytotoxic effects of these compounds on the germination of Arabidopsis thaliana seeds were tested by a filter paper assay. Compound 7 and known compounds 3-(2-hydroxyphenyl)-1-propanol (8) and o-coumaric acid (9) remarkably showed inhibition activity against Arabidopsis seed germination at a concentration of 1.0 mM. Compounds 1, 2, 5, 6, and 10 showed slight inhibitory activity at the test concentration after treatment for 3 days, while the other compounds showed no obvious inhibitory effects. Moreover, 7-9 were further found to show obvious inhibitory activity on retarding the seedling growth of Ar. thaliana cultured in soil medium.
Molecules | 2014
Jing Wang; Qiao-Lin Xu; Meng-Fei Zheng; Hui Ren; Ting Lei; Ping Wu; Zhong-Yu Zhou; Xiaoyi Wei; Jian-Wen Tan
Two new 30-noroleanane triterpenes, 2α,3β,20α-trihydroxy-30-norolean-12-en-28-oic acid (1), 2α,3β-dihydroxy-23-oxo-30-norolean-12,20(29)-dien-28-oic acid (2), were isolated from the pericarps of Akebia trifoliata, together with four known ones, 3β-akebonoic acid (3), 2α,3β-dihydroxy-30-noroleana-12,20(29)-dien-28-oic acid (4), 3α-akebonoic acid (5) and quinatic acid (6). Their structures were established on the basis of detailed spectroscopic analysis, and they were all isolated from the pericarps of A. trifoliata for the first time. Compounds 3−6 showed in vitro bacteriostatic activity against four assayed Gram-positive bacterial strains. In particular 3 showed antibacterial activity toward MRSA with a MIC value 25 μg/mL, which was more potent than kanamycin (MIC 125 μg/mL). No compounds showed antibacterial activity toward the three Gram-negative bacteria tested. Compounds 4 and 5 showed interesting in vitro growth inhibitory activity against human tumor A549 and HeLa cell lines, with IC50 values ranging from 8.8 and 5.6 μM, respectively. Compounds 1, 2, 5 and 6 were further revealed to show significant in vitro α-glucosidase inhibitory activity with IC50 values from 0.035 to 0.367 mM, which were more potent than the reference compound acarbose (IC50 0.409 mM).
Lipids | 2003
Jian-Wen Tan; Ze-Jun Dong; Ji-Kai Liu
Five cerebrosides (1–5), including three new ones named cortenuamide A (1), cortenuamide B (2), and cortenuamide C (3), were isolated from the fruiting bodies of the basid-iomycete Cortinarius tenuipes. The structures of those compounds were elucidated as (4E,8E)-N-d-2′-hydroxytetracosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (1), (4E,8E)-N-d-2′-hydroxytricosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8 sphingadienine (2), (4E, 8E)-N-d-2′-hydroxydocosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (3), (4E, 8E)-N-d-2′-hydroxyoctadecanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (4), and (4E, 8E)-N-d-2′-hydroxypalmitoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (5) by spectral and chemical methods.
Food Chemistry | 2015
Jing Wang; Hui Ren; Qiao-Lin Xu; Zhong-Yu Zhou; Ping Wu; Xiaoyi Wei; Yong Cao; Xue-Xiang Chen; Jian-Wen Tan
Three new oleanane triterpenoids, 2α,3β,29-trihydroxyolean-12-en-28-oic acid (1), 2α,3β-dihydroxy-23-oxo-olean-12-en-28-oic acid (2) and 2α,3β,21β,22α-tetrahydroxyolean-12-en-28,29-dioic acid (3), and ten known ones, maslinic acid (4), arjunolic acid (5), oleanolic acid (6), 3-epi-oleanolic acid (7), stachlic acid A (8), serratagenic acid (9), gypsogenic acid (10), 2α,3β-dihydroxyol-ean-13(18)-en-28-oic acid (11), mesembryanthemoidigenic acid (12) and 12α-hydroxy-δ-lactone (13), were isolated from the pericarps of Akebia trifoliata, a new valued fruit crop in China. Their structures were elucidated on the basis of extensive spectroscopic analysis. Compounds 8, 10, 11 and 13 were isolated for the first time from the genus Akebia. All the compounds were tested for their antimicrobial activity against five bacterial strains. Compounds 4, 6 and 11 showed significant antibacterial activity toward all the assayed microorganisms with MIC values ranging from 0.9 to 15.6μg/mL, which were close or even more potent than the reference compound Kanamycin (MIC values ranging from 1.9 to 3.9μg/mL).
Molecules | 2012
Mei Zhang; Zhong-Yu Zhou; Jing Wang; Yong Cao; Xue-Xiang Chen; Wei-Min Zhang; Li-Dong Lin; Jian-Wen Tan
Two new phytoecdysteroids, (25S)-20,22-O-(R-ethylidene)inokosterone (1) and 20,22-O-(R-3-methoxycarbonyl)propylidene-20-hydroxyecdysone (2), together with six known phytoecdysteroids 3–8 were isolated from the roots of Achyranthes bidentata Blume. The new structures were established on the basis of spectroscopic studies and chemical evidences. The absolute configuration at C-25 in the structure of known compound 3 was determined by chemical and spectroscopic means.
Planta | 2004
Paweł Bednarek; Jens Winter; Björn Hamberger; Neil J. Oldham; Bernd Schneider; Jian-Wen Tan; Klaus Hahlbrock
All hitherto identified aromatic compounds accumulating in leaves of Arabidopsis thaliana (L.) Heynh. upon infection with virulent or avirulent strains of Pseudomonas syringae pathovar tomato (Pst) were indolic metabolites. We now report the strong accumulation of a novel type of natural product, 3′-O-β-d-ribofuranosyl adenosine (3′RA), exclusively during compatible interactions. In contrast to the various indolic metabolites, 3′RA was undetectable in incompatible interactions of A. thaliana leaves with an avirulent Pst strain, as well as in uninfected control leaves. A similar, strong induction of 3′RA was observed in compatible but, again, not in incompatible interactions of Pst with its natural host, Lycopersicon esculentum. The strength of the effect and its confinement to compatible interactions suggests that it may be applicable as a diagnostic tool.
Zeitschrift für Naturforschung C | 2003
Lin Hu; Jian-Wen Tan; Ji-Kai Liu
Abstract A new natural pyridine derivative (3-aldehyde-2-amino-6-methoxypyridine, 1) together with (R)-glycidyl octadecanoate (2) and five ergostane-type sterols (3-7) were isolated from the fruiting bodies of the basidiomycete Cortinarius umidicola Kauffm. Their structures were established by spectral methods (MS, IR, 1D and 2D-NMR experiments).
Molecules | 2017
Li-Mei Dong; Xu-Chao Jia; Qing-Wen Luo; Qiang Zhang; Bi Luo; Wen-Bin Liu; Xu Zhang; Qiao-Lin Xu; Jian-Wen Tan
A phytochemical study on the aerial parts of Mikania micrantha led to the isolation of two new phenolic compounds, benzyl 5-O-β-d-glucopyranosyl-2,5-dihydroxybenzoate (1) and (7S,8R)-threo-dihydroxydehydrodiconiferyl alcohol 9-acetate (2), together with twelve known compounds, benzyl 2-O-β-d-glucopyranosyl-2,6-dihydroxybenzoate (3), 4-allyl-2,6-dimethoxyphenol glucoside (4), (+)-isolariciresinol (5), icariol A2 (6), 9,10-dihydroxythymol (7), 8,9,10-trihydroxythymol (8), caffeic acid (9), p-coumaric acid (10), ethyl protocatechuate (11), procatechuic aldehyde (12), 4-hydroxybenzoic acid (13), and hydroquinone (14). Their structures were elucidated on the basis of extensive spectroscopic analysis. Except 8 and 9, all the other compounds were isolated from this plant species for the first time. The antioxidant activity of those isolated compounds were evaluated using three different assays. Compounds 1, 2, 3, 9, 10, 13, and 14 demonstrated significant 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) free radical cation scavenging activity ranging from SC50 0.31 to 4.86 µM, which were more potent than l-ascorbic acid (SC50 = 10.48 µM). Compounds 5, 9, 11, and 12 exhibited more potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (SC50 = 16.24–21.67 µM) than l-ascorbic acid (39.48 µM). Moreover, the ferric reducing antioxidant power (FRAP) of compounds 2, 5, 9, and 11 were discovered to be also comparable to or even more potent than l-ascorbic acid.