Jian-Woon Chen
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jian-Woon Chen.
Bioresource Technology | 2011
Thye San Cha; Jian-Woon Chen; Eng Giap Goh; Ahmad Aziz; Saw Hong Loh
This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.
Sensors | 2013
Jian-Woon Chen; Chong-Lek Koh; Choon-Kook Sam; Wai-Fong Yin; Kok-Gan Chan
In the bacteria kingdom, quorum sensing (QS) is a cell-to-cell communication that relies on the production of and response to specific signaling molecules. In proteobacteria, N-acylhomoserine lactones (AHLs) are the well-studied signaling molecules. The present study aimed to characterize the production of AHL of a bacterial strain A9 isolated from a Malaysian tropical soil. Strain A9 was identified as Burkholderia sp. using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rDNA nucleotide sequence analysis. AHL production by A9 was detected with two biosensors, namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Thin layer chromatography results showed N–hexanoylhomoserine lactone (C6-HSL) and N–octanoylhomoserine lactone (C8-HSL) production. Unequivocal identification of C6-HSL and C8-HSL was achieved by high resolution triple quadrupole liquid chromatography-mass spectrometry analysis. We have demonstrated that Burkholderia sp. strain A9 produces AHLs that are known to be produced by other Burkholderia spp. with CepI/CepR homologs.
Sensors | 2013
Yin Yin Lau; Joanita Sulaiman; Jian-Woon Chen; Wai-Fong Yin; Kok-Gan Chan
Bacterial communication or quorum sensing (QS) is achieved via sensing of QS signaling molecules consisting of oligopeptides in Gram-positive bacteria and N-acyl homoserine lactones (AHL) in most Gram-negative bacteria. In this study, Enterobacteriaceae isolates from Batavia lettuce were screened for AHL production. Enterobacter asburiae, identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was found to produce short chain AHLs. High resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) analysis of the E. asburiae spent supernatant confirmed the production of N-butanoyl homoserine lactone (C4-HSL) and N–hexanoyl homoserine lactone (C6-HSL). To the best of our knowledge, this is the first report of AHL production by E. asburiae.
Sensors | 2013
Cheng-Siang Wong; Chong-Lek Koh; Choon-Kook Sam; Jian-Woon Chen; Yee Meng Chong; Wai-Fong Yin; Kok-Gan Chan
Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.
The Scientific World Journal | 2014
Kok-Gan Chan; Huey Jia Cheng; Jian-Woon Chen; Wai-Fong Yin; Yun Fong Ngeow
Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs). These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL) and N-octanoyl-homoserine lactone (C8-HSL), was detected.
Sensors | 2013
Yun Fong Ngeow; Huey Jia Cheng; Jian-Woon Chen; Wai-Fong Yin; Kok-Gan Chan
Klebsiella pneumoniae is one of the most common Gram-negative bacterial pathogens in clinical practice. It is associated with a wide range of disorders, ranging from superficial skin and soft tissue infections to potentially fatal sepsis in the lungs and blood stream. Quorum sensing, or bacterial cell-cell communication, refers to population density-dependent gene expression modulation. Quorum sensing in Proteobacteria relies on the production and sensing of signaling molecules which are mostly N-acylhomoserine lactones. Here, we report the identification of a multidrug resistant clinical isolate, K. pneumoniae strain CSG20, using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We further confirmed quorum sensing activity in this strain with the use of high resolution tandem liquid chromatography quadrupole mass spectrometry and provided evidence K. pneumoniae strain CSG20 produced N-hexanoyl-homoserine lactone (C6-HSL). To the best of our knowledge, this is the first report on the production of N-hexanoylhomoserine lactone (C6-HSL) in clinical isolate K. pneumoniae.
Journal of Bacteriology | 2012
Jian-Woon Chen; Han Ming Gan; Wai-Fong Yin; Kok-Gan Chan
Roseomonas sp. strain B5 was isolated from Malaysian tropical soil that showed N-acylhomoserine lactone degradation. This is the first genome announcement of a member from the genus of Roseomonas and the first report on the quorum-quenching activity of Roseomonas spp.
Sensors | 2013
Jian-Woon Chen; Shenyang Chin; Kok Keng Tee; Wai-Fong Yin; Yeun-Mun Choo; Kok-Gan Chan
Bacterial cell-to-cell communication (quorum sensing) refers to the regulation of bacterial gene expression in response to changes in microbial population density. Quorum sensing bacteria produce, release and respond to chemical signal molecules called autoinducers. Bacteria use two types of autoinducers, namely autoinducer-1 (AI-1) and autoinducer-2 (AI-2) where the former are N-acylhomoserine lactones and the latter is a product of the luxS gene. Most of the reported literatures show that the majority of oral bacteria use AI-2 for quorum sensing but rarely the AI-1 system. Here we report the isolation of Pseudomonas putida strain T2-2 from the oral cavity. Using high resolution mass spectrometry, it is shown that this isolate produced N-octanoylhomoserine lactone (C8-HSL) and N-dodecanoylhomoserine lactone (C12-HSL) molecules. This is the first report of the finding of quorum sensing of P. putida strain T2-2 isolated from the human tongue surface and their quorum sensing molecules were identified.
Journal of Biotechnology | 2017
Wah-Seng See-Too; Kah-Ooi Chua; Yan-Lue Lim; Jian-Woon Chen; Peter Convey; Taznim Begam Mohd Mohidin; Wai-Fong Yin; Kok-Gan Chan
The type strain Planococcus donghaensis JH1T is a psychrotolerant and halotolerant bacterium with starch-degrading ability. Here, we determine the carbon utilization profile of P. donghaensis JH1T and report the first complete genome of the strain. This study revealed the strains ability to utilize pectin and d-galacturonic acid, and identified genes responsible for degradation of the polysaccharides. The genomic information provided may serve as a fundamental resource for full exploration of the biotechnological potential of P. donghaensis JH1T.
Journal of Bacteriology | 2012
Jian-Woon Chen; Kok-Gan Chan
Dyella japonica strain A8 is a Malaysian tropical soil bacterial strain which shows N-acylhomoserine lactone-degrading activity. Here, we present its draft genome sequence. A putative quorum-quenching gene was identified based on the genome sequence analysis of strain A8. To the best of our knowledge, this is the first genome announcement of a member from the genus of Dyella, and this is also the first work that reports the quorum-quenching activity of Dyella japonica.