Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianbin He is active.

Publication


Featured researches published by Jianbin He.


International Journal of Molecular Sciences | 2016

The Protective Effect of Grape-Seed Proanthocyanidin Extract on Oxidative Damage Induced by Zearalenone in Kunming Mice Liver.

Miao Long; Shuhua Yang; Jian-Xin Han; Peng Li; Yi Zhang; Shuang Dong; Xinliang Chen; Jiayi Guo; Jun Wang; Jianbin He

Although grape-seed proanthocyanidin extract (GSPE) demonstrates strong anti-oxidant activity, little research has been done to clearly reveal the protective effects on the hepatotoxicity caused by zearalenone (ZEN). This study is to explore the protective effect of GSPE on ZEN-induced oxidative damage of liver in Kunming mice and the possible protective molecular mechanism of GSPE. The results indicated that GSPE could greatly reduce the ZEN-induced increase of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. GSPE also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD and GSH-Px. The analysis indicated that ZEN decreased both mRNA expression levels and protein expression levels of nuclear erythroid2-related factor2 (Nrf2). Nrf2 is considered to be an essential antioxidative transcription factor, as downstream GSH-Px, γ-glutamyl cysteine synthetase (γ-GCS), hemeoxygenase-1 (HO-1), and quinone oxidoreductase 1 (NQO1) decreased simultaneously, whereas the pre-administration of GSPE groups was shown to elevate these expressions. The results indicated that GSPE exerted a protective effect on ZEN-induced hepatic injury and the mechanism might be related to the activation of the Nrf2/ARE signaling pathway.


International Journal of Molecular Sciences | 2016

Sulforaphane Prevents Testicular Damage in Kunming Mice Exposed to Cadmium via Activation of Nrf2/ARE Signaling Pathways.

Shuhua Yang; Miao Long; Li-Hui Yu; Lin Li; Peng Li; Yi Zhang; Yang Guo; Feng Gao; Ming-Da Liu; Jianbin He

Sulforaphane (SFN) is a natural and highly effective antioxidant. Studies suggest that SFN protects cells and tissues against cadmium (Cd) toxicity. This study investigated the protective effect of SFN against oxidative damage in the testes of Kunming mice exposed to cadmium, and explored the possible molecular mechanisms involved. Cadmium greatly reduced the serum testosterone levels in mice, reduced sperm motility, total sperm count, and increased the sperm deformity rate. Cadmium also reduces superoxide dismutase (T-SOD) and glutathione (GSH) levels and increases malondialdehyde (MDA) concentrations. SFN intervention improved sperm quality, serum testosterone, and antioxidant levels. Both mRNA and protein expression of mouse testicular nuclear factor-erythroid 2-related factor 2 (Nrf2) was reduced in cadmium-treated group. Furthermore, the downstream genes of Nrf2, glutathione peroxidase (GSH-Px), γ-glutamyl cysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) were also decreased in cadmium-treated group. SFN intervention increases the expression of these genes. Sulforaphane prevents cadmium-induced testicular damage, probably via activation of Nrf2/ARE signaling.


Nutrients | 2016

Proanthocyanidins Attenuation of Chronic Lead-Induced Liver Oxidative Damage in Kunming Mice via the Nrf2/ARE Pathway

Miao Long; Yi Liu; Yu Cao; Nan Wang; Meng Dang; Jianbin He

Lead is harmful for human health and animals. Proanthocyanidins (PCs), a natural antioxidant, possess a broad spectrum of pharmacological and medicinal properties. However, its protective effects against lead-induced liver damage have not been clarified. This study was aimed to evaluate the protective effect of PCs on the hepatotoxicity of male Kunming mice induced by chronic lead exposure. A total of 70 healthy male Kunming mice were averagely divided into four groups: control group, i.e., the group exposed to lead, the group treated with PCs, and the group co-treated with lead and PCs. The mice exposed to lead were given water containing 0.2% lead acetate. Mice treated in the PCs and PCs lead co-treated groups were given PC (100 mg/kg) in 0.9% saline by oral gavage. Lead exposure caused a significant elevation in the liver function parameters, lead level, lipid peroxidation, and inhibition of antioxidant enzyme activities. The induction of oxidative stress and histological alterations in the liver were minimized by co-treatment with PCs. Meanwhile, the number of Transferase-Mediated Deoxyuridine Triphosphate-Biotin Nick End Labeling (TUNEL)-positive cells was significantly reduced in the PCs/lead co-treated group compared to the lead group. In addition, the lead group showed an increase in the expression level of Bax, while the expression of Bcl-2 was decreased. Furthermore, the lead group showed an increase in the expression level of endoplasmic reticulum (ER) stress-related genes and protein (GRP78 and CHOP). Co-treated with PCs significantly reversed these expressions in the liver. PCs were, therefore, demonstrated to have protective, antioxidant, and anti-ER stress and anti-apoptotic activities in liver damage caused by chronic lead exposure in the Kunming mouse. This may be due to the ability of PCs to enhance the ability of liver tissue to protect against oxidative stress via the Nrf2/ARE signaling pathway, resulting in decreasing ER stress and apoptosis of liver tissue.


Cellular Physiology and Biochemistry | 2013

Effect of non-esterified fatty acids on fatty acid metabolism-related genes in calf hepatocytes cultured in vitro.

Peng Li; Yiming Liu; Yi Zhang; Miao Long; Yang Guo; Zhe Wang; Xinwei Li; Cai Zhang; Xiaobing Li; Jianbin He; Guowen Liu

Background: NEFA plays numerous roles in the metabolism of glucose, lipids, and proteins. A number of experimental studies have shown that NEFA may have an important role in fatty acid metabolism in the liver, especially in dairy cows that experience negative energy balance (NEB) during early lactation. Methods: In this study, using fluorescent quantitative RT-PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of NEFA (0, 0.2, 0.4, 0.8, 1.6, and 3.2 mmol/L) on fatty acid metabolism by monitoring the mRNA and protein expression of the following key enzymes: long chain acyl-CoA synthetase (ACSL), carnitine palmitoyltransferase IA (CPT IA), long chain acyl-CoA dehydrogenase (ACADL), and acetyl-CoA carboxylase (ACC). Results: The mRNA and protein expression levels of ACSL and ACADL markedly increased as the concentration of NEFA in the media was increased. The mRNA and protein expression levels of CPT IA were enhanced significantly when the NEFA concentrations increased from 0 to 1.6 mmol/L and decreased significantly when the NEFA concentrations increased from 1.6 to 3.2 mmol/L. The mRNA and protein expression of ACC decreased gradually with increasing concentrations of NEFA. Conclusion: These findings indicate that increased NEFA significantly promote the activation and β-oxidation of fatty acids, but very high NEFA concentrations may inhibit the translocation of fatty acids into mitochondria of hepatocytes. This may explain the development of ketosis or liver lipidosis in dairy cows. CPT IA might be the key control enzyme of the fatty acid oxidation process in hepatocytes.


Research in Veterinary Science | 2014

Effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen acidosis in vitro.

M. Long; W.J. Feng; Peng Li; Yi Zhang; R.X. He; L.H. Yu; Jianbin He; W.Y. Jing; Y.M. Li; Zhigang Wang; Guowen Liu

The aim of this study was to examine the effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 (M. elsdenii H6F32) on ruminal pH and the lactic acid concentrations in simulated rumen acidosis conditions in vitro. A mixed culture of ruminal bacteria, buffer, and primarily degradable substrates was inoculated with equal numbers of M. elsdenii H6 or M. elsdenii H6F32. The pH and lactic acid concentrations in the mixed culture were determined at 0, 2, 4, 6, 8, 10, 12, 14, 16, and 18 h of incubation. Acid-tolerant M. elsdenii H6F32 reduced the accumulation of lactic acid and increased the pH value. These results indicate that acid-tolerant M. elsdenii H6F32 could be a potential candidate for preventing rumen acidosis.


Journal of Dairy Science | 2013

Short communication: high insulin concentrations inhibit fatty acid oxidation-related gene expression in calf hepatocytes cultured in vitro.

Peng Li; C.C. Wu; Miao Long; Yi Zhang; Xuwen Li; Jianbin He; Zhigang Wang; Guowen Liu

In dairy cows, ketosis is an important disease associated with negative energy balance, which leads to low blood glucose levels and high blood nonesterified fatty acid levels. The liver is the most active organ in cows for the metabolism of nonesterified fatty acids. Insulin is an anabolic hormone that plays numerous roles in the metabolism of carbohydrates, lipids, and proteins, as well as being a potent regulator of fatty acid oxidation. In this study, using fluorescent quantitative reverse-transcription PCR, ELISA, and primary hepatocytes cultured in vitro, we examined the effect of insulin (0, 5, 10, 20, 50, and 100 nmol/L) on fatty acid oxidation by monitoring mRNA and protein expression levels of key enzymes: long-chain acyl-coenzyme A synthetase, carnitine palmitoyltransferase I, and long-chain acyl-coenzyme A dehydrogenase. The results showed that the mRNA and protein expression of long-chain acyl-coenzyme A synthetase, carnitine palmitoyltransferase I, and long-chain acyl-coenzyme A dehydrogenase was markedly decreased when the concentration of insulin in the media was increased. These findings indicate that high levels of insulin significantly inhibit the expression of genes related to fatty acid oxidation and consequently results in a decreased level of fatty acid oxidation in calf hepatocytes.


Molecules | 2016

The Protective Effect of Selenium on Chronic Zearalenone-Induced Reproductive System Damage in Male Mice

Miao Long; Shuhua Yang; Yuan Wang; Peng Li; Yi Zhang; Shuang Dong; Xinliang Chen; Jiayi Guo; Jianbin He; Zenggui Gao; Jun Wang

This study aims to explore the protective effect of selenium (Se) on chronic zearalenone (ZEN)-induced reproductive system damage in male mice and the possible protective molecular mechanism against this. The chronic ZEN-induced injury mouse model was established with the continuous intragastric administration of 40 mg/kg body mass (B.M.) ZEN for 28 days. Then, interventions with different doses (0.1, 0.2, and 0.4 mg/kg B.M.) of Se were conducted on mice to analyse the changes in organ indexes of epididymis and testis, antioxidant capability of testis, serum level of testosterone, sperm concentration and motility parameters, and the expression levels of apoptosis-associated genes and blood testis barrier- (BTB) related genes. Our results showed that Se could greatly improve the ZEN-induced decrease of epididymis indexes and testis indexes. Results also showed that the decrease in sperm concentration, sperm normality rate, and sperm motility parameters, including percentage of motile sperm (motile), tropism percentage (progressive) and sperm average path velocity (VAP), caused by ZEN were elevated upon administration of the higher dose (0.4 mg/kg) and intermediate dose (0.2 mg/kg) of Se. Selenium also significantly reduced the content of malondialdehyde (MDA) but enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the testis tissue. Further research demonstrated that ZEN increased the level of mRNA expression of BCL2-associated X protein (Bax) and caspase 3 (Casp3), decreased the level of mRNA expression of B cell leukemia/lymphoma 2 (Bcl2), vimentin (Vim) and cadherin 2 (Cdh2), whereas the co-administration of Se reversed these gene expression levels. Our results indicated that high levels of Se could protect against reproductive system damage in male mice caused by ZEN and the mechanism might such be that Se improved mice antioxidant ability, inhibited reproductive cell apoptosis, and increased the decrease of BTB integrity-related genes caused by ZEN.


International Journal of Molecular Sciences | 2016

Intervention of Grape Seed Proanthocyanidin Extract on the Subchronic Immune Injury in Mice Induced by Aflatoxin B1

Miao Long; Yi Zhang; Peng Li; Shuhua Yang; Wenkui Zhang; Jian-Xin Han; Yuan Wang; Jianbin He

The aim was to investigate the prevention of grape seed proanthocyanidin extract (GSPE) on the subchronic immune injury induced by aflatoxin B1 (AFB1) and the possible ameliorating effect of GSPE in mice. The subchronic AFB1-induced immune injury mice model was set up with the continuous administration of 100 μg/kg body weight (BW) AFB1 for six weeks by intragastric administration. Then, intervention with different doses (50 and 100 mg/kg BW) of GSPE was conducted on mice to analyze the changes of body weight, immune organ index, antioxidant capability of spleen, serum immunoglobulin content, and the expression levels of inflammatory cytokines. The prevention of GSPE on the immune injury induced by AFB1 was studied. The GSPE could relieve the AFB1-induced reduction of body weight gain and the atrophy of the immune organ. The malondialdehyde (MDA) level of the spleen in the AFB1 model group significantly increased, but levels of catalase (CAT), glutathione (GSH), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) significantly decreased. The GSPE could significantly inhibit the oxidative stress injury of the spleen induced by AFB1. AFB1 exposure could not significantly change the contents of IgA, IgG, or IgM. AFB1 significantly improved the expression of interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ). Additionally, GSPE could decrease the expression of these four proinflammatory factors to different degrees and inhibit the inflammatory reaction of mice. The results suggest that GSPE alleviates AFB1-induced oxidative stress and significantly improves the immune injury of mice induced by AFB1.


Nutrients | 2018

Combined Use of C. butyricum Sx-01 and L. salivarius C-1-3 Improves Intestinal Health and Reduces the Amount of Lipids in Serum via Modulation of Gut Microbiota in Mice

Miao Long; Shuhua Yang; Peng Li; Xin Song; Jiawen Pan; Jianbin He; Yi Zhang; Rina Wu

The study was conducted to investigate whether combined use of C. butyricum Sx-01 and L. salivarius C-1-3 could improve the intestinal health and reduce the lipid levels in sera of mice and whether these benefits were related to regulating the intestinal microflora. Eighty Kunming male mice were divided into four groups with five replicates per group and four mice per replicate. Mice in the control group were administrated with 0.2 mL normal saline; mice in three experimental groups were daily orally administrated with 4 × 108 cfu of L. salivarius, 4 × 108 cfu of C. butyricum, and a combination thereof (2 × 108 cfu of L. salivarius, and 2 × 108 cfu of C. butyricum), respectively. The experiment lasted for 14 days. The results showed that the average daily feed intake (ADFI) and feed/gain (F/G) ratio of growing mice underwent no significant changes (p > 0.05); however, the average daily gain (ADG) tended to increase over short periods of time. The activities of SOD and GSH-Px in serum in the combination group were significantly increased (p < 0.05); The triglyceride, and total cholesterol, contents in serum in the combined treatment group were significantly decreased (p < 0.05); The total volatile fatty acids and butyric acid in faecal matter of mice in the experimental groups were all significantly increased at 14 days (p < 0.05); The length of villi, and the mucosal thickness of colon and caecum (p < 0.05) were significantly improved; The relative abundance of some bacteria with antioxidant capacity or decomposing cholesterol capacity or butyrate producing capacity was increased, while the relative abundance of some pathogenic bacteria was decreased in the colon. Furthermore, our results showed that the beneficial effects of the combined use of the two strains was higher than that of single use. Overall, the results demonstrated that the combined use of C. butyricum Sx-01 and L. salivarius C-1-3 can significantly improve intestinal health and reduce the amount of lipids in sera of mice. The reason for these effects might be that besides their own probiotic effects, combined use of the two strains could regulate the intestinal microflora.


Molecules | 2018

Protective Mechanism of Sulforaphane on Cadmium-Induced Sertoli Cell Injury in Mice Testis via Nrf2/ARE Signaling Pathway

Shuhua Yang; Li-Hui Yu; Lin Li; Yang Guo; Yi Zhang; Miao Long; Peng Li; Jianbin He

The present study evaluated the mechanism underlying the protective effect of sulforaphane (SFN) on cadmium (Cd)-induced Sertoli cell (TM4 cells) injury in mice. The apoptosis rate of cells in each group was detected by flow cytometry. It was determined the effect of SFN on the expression of downstream molecular targets of Nrf2/ARE axis and on the lipid peroxide content. The related genes involved in the nuclear factor E2-related factor 2(Nrf2)/antioxidant response element (ARE) signaling pathway were evaluated by RT-PCR; for example, the mRNA expression levels of Nrf2, heme oxygenase-1 (HO-1), glutathione peroxidase (GSH-Px), quinone oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase (γ-GCS), while the protein expression levels were assessed by Western blot. Our results showed that the mRNA and protein expression levels of Nrf2, HO-1, NQO1, GSH-Px, and γ-GCS were increased in various degree when the Sertoli cells were to added different concentrations of SFN. Our results also showed that SFN reduced the apoptosis rate, increased the activity of T-SOD, inhibited the increase of the MDA content caused by Cd. Meanwhile, SFN could increase the mRNA and protein expression levels of Nrf2, HO-1 and NQO1 and reduced the mRNA and protein expression levels of GSH-Px and γ-GCS caused by Cd in Sertoli cells (p < 0.01). Taken together, SFN could improve the antioxidant capacity of Sertoli cells, and exert a protective effect on the oxidative damage and apoptosis of Cd-induced Sertoli cells through the activation of Nrf2/ARE signal transduction pathway.

Collaboration


Dive into the Jianbin He's collaboration.

Top Co-Authors

Avatar

Miao Long

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Peng Li

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shuhua Yang

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yi Zhang

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinliang Chen

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yang Guo

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shuang Dong

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Xin Han

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiayi Guo

Shenyang Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge