Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianbin Pan is active.

Publication


Featured researches published by Jianbin Pan.


Analytical Chemistry | 2014

Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification.

Yanyan Yu; Zuanguang Chen; Fan Yang; Jianbin Pan; Beibei Zhang; Duanping Sun

In this work, a simple and label-free electrochemical biosensor is developed for microRNA (miRNA) detection on the basis of an arched probe mediated isothermal exponential amplification reaction (EXPAR). The arched probe assembled on the electrode surface consists of two strands that are partially complementary to each other at both ends. The target can hybridize with the complementary sequence of the arched structure, leading to the cleavage of the probe. The strand fixed on the surface of the electrode self-assembles, in the presence of hemin, to G-quadruplex unit, yielding electrochemical signals. The other strand liberated into the solution triggers the EXPAR to recycle and regenerate targets. This method exhibits ultrahigh sensitivity toward miRNA with detection limits of 5.36 fM and a detection range of 3 orders of magnitude. The biosensor is capable of discriminating a single-nucleotide difference between concomitant miRNA and performs well in analyzing crude extractions from cancer cell lines.


Biomicrofluidics | 2011

An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics

Fan Yang; Zuanguang Chen; Jianbin Pan; Xinchun Li; Jun Feng; Hui Yang

Seeking potential toxic and side effects for clinically available drugs is considerably beneficial in pharmaceutical safety evaluation. In this article, the authors developed an integrated microfluidic array system for phenotype-based evaluation of toxic and teratogenic potentials of clinical drugs by using zebrafish (Danio rerio) embryos as organism models. The microfluidic chip consists of a concentration gradient generator from upstream and an array of open embryonic culture structures by offering continuous stimulation in gradients and providing guiding, cultivation and exposure to the embryos, respectively. The open culture reservoirs are amenable to long-term embryonic culturing. Gradient test substances were delivered in a continuous or a developmental stage-specific manner, to induce embryos to generate dynamic developmental toxicity and teratogenicity. Developmental toxicity of doxorubicin on zebrafish eggs were quantitatively assessed via heart rate, and teratological effects were characterized by pericardial impairment, tail fin, notochord, and SV-BA distance ∕body length. By scoring the teratogenic severity, we precisely evaluated the time- and dose-dependent damage on the chemical-exposed embryos. The simple and easily operated method presented herein demonstrates that zebrafish embryo-based pharmaceutic assessment could be performed using microfluidic systems and holds a great potential in high-throughput screening for new compounds at single animal resolution.


Analytica Chimica Acta | 2012

Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

Xinchun Li; Zuanguang Chen; Yuwen Zhong; Fan Yang; Jianbin Pan; Yajing Liang

Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 μM (S/N=3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system.


Talanta | 2013

Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode.

Yanyan Yu; Zuanguang Chen; Beibei Zhang; Xinchun Li; Jianbin Pan

In this work, a facile electrochemical sensor based on poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G) and graphite was fabricated. The composite electrode exhibited excellent selectivity and sensitivity towards uric acid (UA), owing to the electrocatalytic effect of graphene nanosheets and the electrostatic attractions between PDDA-G and UA. The anodic peak current of UA obtained by cyclic voltammetry (CV) increased over 10-fold compared with bare carbon paste electrode (CPE). And the reversibility of the oxidation process was improved significantly. Differential pulse voltammetry (DPV) was used to determine UA in the presence of ascorbic acid (AA) and dopamine (DA). It was found that all of oxidation peaks of three species could be well resolved, and the peak current of UA was much stronger than the other two components. More importantly, considerable-amount of AA and DA showed negligible interference to UA assay. The calibration curve for UA ranged from 0.5 to 20 μmol L(-1) with a correlation coefficient of 0.9934. The constructed sensor has been employed to quantitatively determine UA in urine samples.


Talanta | 2011

A facile light-emitting-diode induced fluorescence detector coupled to an integrated microfluidic device for microchip electrophoresis.

Fan Yang; Xinchun Li; Wen Zhang; Jianbin Pan; Zuanguang Chen

In this paper, a compact and inexpensive light emitting diode induced fluorescence (LED-IF) detector with simplified optical configuration was developed and assembled in an integrated microfluidic device for microscale electrophoresis. The facile detector mainly consisted of an LED, a focusing pinhole, an emission filter and a photodiode, and was encapsulated in the upper layer of an aluminum alloy device with two layers. At the bottom layer, integrated circuit (IC) was assembled to manipulate the voltage for sample injection and separation, LED emission and signal amplifying. A high-power LED with fan-shaped heat sink was used as excitation source. The excitation light was focused by a 1.1mm diameter pinhole fabricated in a thin piece of silver foil, and the obtained sensitivity was about 3 times as high as that using electrode plate. Other important parameters including LED driven current, fluorescence collection angle and detection distance have also been investigated. Under optimal conditions, considerable high-response of 0.09 fmol and 0.18 fmol mass detection limits at 0.37 nL injection volume for sodium fluorescein (SF) and FITC was achieved, respectively. This device has been successfully employed to separate penicillamine (PA) enantiomers. Due to such significant features as low-cost, integration, miniaturization, and ease of commercialization, the presented microfluidic device may hold great promise for clinical diagnostics and bioanalytical applications.


PLOS ONE | 2014

Zebrafish on a Chip: A Novel Platform for Real-Time Monitoring of Drug-Induced Developmental Toxicity

Yinbao Li; Fan Yang; Zuanguang Chen; Beibei Zhang; Jianbin Pan; Xinchun Li; Duanping Sun; Hongzhi Yang

Pharmaceutical safety testing requires a cheap, fast and highly efficient platform for real-time evaluation of drug toxicity and secondary effects. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic and teratogenic effects of drugs using zebrafish (Danio rerio) embryos and larvae as the model organism. The microfluidic chip is composed of two independent functional units, enabling the assessment of zebrafish embryos and larvae. Each unit consists of a fluidic concentration gradient generator and a row of seven culture chambers to accommodate zebrafish. To test the accuracy of this new chip platform, we examined the toxicity and teratogenicity of an anti-asthmatic agent-aminophylline (Apl) on 210 embryos and 210 larvae (10 individuals per chamber). The effect of Apl on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators such as heart rate, survival rate, body length and hatch rate. Most importantly, a new index called clonic convulsion rate, combined with mortality was used to evaluate the toxicities of Apl on zebrafish larvae. We found that Apl can induce deformity and cardiovascular toxicity in both zebrafish embryos and larvae. This microdevice is a multiplexed testing apparatus that allows for the examination of indexes beyond toxicity and teratogenicity at the sub-organ and cellular levels and provides a potentially cost-effective and rapid pharmaceutical safety assessment tool.


Talanta | 2011

A novel microchip based on indium tin oxide coated glass for contactless conductivity detection.

Jing Zhao; Zuanguang Chen; Xinchun Li; Jianbin Pan

A microfluidic chip manufactured from glass substrate and indium tin oxide (ITO) coated glass use for contactless conductivity detection was developed. The detecting electrodes were fabricated by screen-printing and chemical etching methods using an ITO-coated glass wafer. Then, the glass substrate containing separation channels was bonded with the bare side of the processed ITO-coated glass, thus producing an electrophoresis chip integrated with contactless conductivity detector. The prepared microchip displayed considerable stability and reproducibility. Sensitive response was obtained at optimal conditions (including the gap between electrodes, excitation frequency, and excitation voltage). The feasibility of this microfluidic device was examined by detection of inorganic ions, and further demonstrated by the quantification of aminopyrine and caffeine in a compound pharmaceutical. The two ingredients can be completely separated within 1 min. The detection limits were 8 μg mL(-1) and 3 μg mL(-1), respectively; with the correlation coefficient of 0.996-0.998 in the linear range from 10 μg mL(-1) to 800 μg mL(-1). The results have showed that the present method is sensitive, reliable and fast.


Journal of Separation Science | 2013

Development of a microchip-pulsed electrochemical method for rapid determination of L-DOPA and tyrosine in Mucuna pruriens

Xinchun Li; Zuanguang Chen; Fan Yang; Jianbin Pan; Yinbao Li

L-3,4-dihydroxyphenylalanine (L-DOPA) is a well-recognized therapeutic compound to Parkinsons disease. Tyrosine is a precursor for the biosynthesis of L-DOPA, both of which are widely found in traditional medicinal material, Mucuna pruriens. In this paper, we described a validated novel analytical method based on microchip capillary electrophoresis with pulsed electrochemical detection for the simultaneous measurement of L-DOPA and tyrosine in M. pruriens. This protocol adopted end-channel amperometric detection using platinum disk electrode on a homemade glass/polydimethylsiloxane electrophoresis microchip. The background buffer consisted of 10 mM borate (pH 9.5) and 0.02 mM cetyltrimethylammonium bromide, which can produce an effective resolution for the two analytes. In the optimal condition, sufficient electrophoretic separation and sensitive detection for the target analytes can be realized within 60 s. Both tyrosine and L-DOPA yielded linear response in the concentration range of 5.0-400 μM (R(2) > 0.99), and the LOD were 0.79 and 1.1 μM, respectively. The accuracy and precision of the established method were favorable. The present method shows several merits such as facile apparatus, high speed, low cost and minimal pollution, and provides a means for the pharmacologically active ingredients assay in M. pruriens.


Journal of Chromatography A | 2013

Differential pulsed amperometry coupled to microchip capillary electrophoresis

Xinchun Li; Zuanguang Chen; Jianbin Pan; Fan Yang; Yinbao Li; Meicun Yao

In this work, we describe a novel electrochemical detection method, differential pulsed amperometry (DPA) on microchip capillary electrophoresis (MCE). In a pulse period, a sequential two-step sampling is executed at two different potentials (E1 and E2). Differential current signal of the duplex sampling events is recorded that functions as time domain. The performance of this detection scheme was evaluated by separating and detecting three model analytes including tyramine (Tym), tryptophan (Trp), and p-aminobenzoic acid (PABA). Multiple parameters that would affect electrochemical response and peak shape, such as sampling potential, sampling time, and electrode cleaning time, were investigated. This pulse technique exhibits better sensitivity over constant potential amperometry (CPA), nearly equal to triple pulsed amperometry (TPA). More importantly, DPA can generate more stable baseline than TPA, primarily due to the background subtraction through the two-step sampling, which is beneficial to further improve analytical sensitivity. In the optimal condition, the limits of detection for Tym, Trp and PABA, were down to 0.27μM, 0.32μM and 1.1μM, respectively. DPA detection opens up a new avenue for microchip electrochemistry, and can be virtually extended to other fluid analysis techniques.


Luminescence | 2014

A two-electrode system-based electrochemiluminescence detection for microfluidic capillary electrophoresis and its application in pharmaceutical analysis.

Jianbin Pan; Zuanguang Chen; Meicun Yao; Xinchun Li; Yinbao Li; Duanping Sun; Yanyan Yu

A two-electrode configuration powered by batteries was designed for a microchip capillary electrophoresis-electrochemiluminescence system. A home-made working electrode for end-column mode detection and wall-jet configuration was made up of a platinum wire (0.3 mm diameter) and a quartz capillary (320 µm internal diameter). The platinum wire served as a pseudoreference electrode. The configuration of the detection power supply comprised two D-size batteries (connected in series), a switch, and an adjustable resistor. The microchip consisted of two layers: the bottom layer was a glass sheet containing injection and separation channels; the upper layer was polydimethylsiloxane block. In order to reduce the loss of electrochemiluminescence signal, a coverslip (0.17 mm thickness) was used as the floor of the detection reservoir. The performance of the system was demonstrated by separation and detection of atropine, anisodamine and proline. The linear response for proline ranged from 5 µM to 100 µM (r = 0.9968), and the limit of detection was 1.0 µM (S/N = 3). The system was further applied to the measurement of atropine in atropine sulfate injection solutions with the limit of detection 2.3 µM. This new system is a potential tool in pharmaceutical analysis.

Collaboration


Dive into the Jianbin Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinchun Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Fan Yang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yinbao Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanyan Yu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Jun Feng

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Meicun Yao

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge