Jianbin Shi
South China University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianbin Shi.
Bioresource Technology | 2012
Chunsheng Pang; Tujun Xie; Lu Lin; Junping Zhuang; Ying Liu; Jianbin Shi; Qiulin Yang
This study presents a novel, efficient and environmentally friendly process for the cooking of corn stalk that uses active oxygen (O2 and H2O2) and a recoverable solid alkali (MgO). The structural changes on the surface of corn stalk before and after cooking were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The results showed that lignin and extractives were effectively removed, especially those on the surface of corn stalk. Additionally, the changes included becoming fibrillar, the exposure of cellulose and hemi-cellulose and the pitting corrosion on the surface, etc. The results also showed that the removal reaction is from outside to inside, but the main reaction is possibly on the surface. Furthermore, the results of active oxygen cooking with a solid alkali are compared with those of alkaline cooking in the paper.
Carbohydrate Research | 2011
Jun Zhang; Lu Lin; Junhua Zhang; Jianbin Shi
Ru/MCM-41 catalyst prepared by an impregnation-formaldehyde reduction method showed higher catalytic activity and sorbitol selectivity than other catalysts in the hydrogenation of glucose. SEM and XRD indicated the partial surface properties of Ru/MCM-41. Moreover, Ru dispersion and Ru surface area of Ru/MCM-41 were determined by pulse chemisorption, and the result further proved that Ru/MCM-41 had higher catalytic activity. A catalyst recycling experiment demonstrated that Ru/MCM-41 was a better catalyst and it could be reused three or four times. A speculated mechanism was proposed to illustrate the detailed process of d-glucose hydrogenation to produce sorbitol.
Molecules | 2010
Yan Gong; Lu Lin; Jianbin Shi; Shijie Liu
In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA) and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide dosage, reaction time and initial pH value were investigated in batch experiments and a plausible mechanism was proposed. The results showed that LA decarboxylation over cupric oxides at around 300 °C under acidic conditions produced the highest yield of butanone (67.5%). In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, XPS and H2-TPR techniques was applied to examine their molecular surfaces and their effects on the reaction process.
Carbohydrate Research | 2012
Jianbin Shi; Qiulin Yang; Lu Lin; Junping Zhuang; Chunsheng Pang; Tujun Xie; Ying Liu
This work describes the structural changes of bagasse hemicelluloses during the cooking process involving active oxygen (O(2) and H(2)O(2)) and solid alkali (MgO). The hemicelluloses obtained from the bagasse raw material, pulp, and yellow liquor were analyzed by high-performance anion-exchange chromatography (HPAEC), gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FT-IR), and (1)H-(13)C 2D hetero-nuclear single quantum coherence spectroscopy (HSQC). The results revealed that the structure of the bagasse hemicelluloses was L-arabino-(4-O-methylglucurono)-D-xylan. Some sugar units in hemicelluloses were oxidized under the cooking conditions. Additionally, the backbones and the ester linkages of hemicelluloses were heavily cleaved during the cooking process.
Carbohydrate Polymers | 2013
Tujun Xie; Lu Lin; Chunsheng Pang; Junping Zhuang; Jianbin Shi; Qiulin Yang
The enzymatic hydrolysis of the bagasse pulp prepared from the treatment process with active oxygen and MgO-based solid alkali was studied. The hydrolysates were tested by IC (ionic chromatography) for the analysis of monosaccharide. Additionally, the changes of pulp before and after hydrolysis were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), Kajaani cellulose automatic analyzer and atomic force microscopy (AFM) techniques. The results showed that an optimized sugar yield of 82.38% was obtained at the substrate concentration of 5% for 72h with the enzyme dosage of 15IU/g. Furthermore, as the length of the cellulose fiber decreased, the crystallinity of cellulose increased, and more depressions appeared on the surface of pulp after enzymatic hydrolysis.
Bioresources | 2015
Qiulin Yang; Dan Huo; Jianbin Shi; Lu Lin; Qiujuan Liu; Qingxi Hou; Hongjie Zhang; Chuan-Ling Si
To avoid undesired polymerization and maximize the selectivity of alkyl levulinate from the acid-catalyzed conversion of biomass-derived furfuryl alcohol, the effects of catalyst and reaction parameters on the formations of humin and alkyl levulinate were investigated. The results show that Amberlyst 15, of moderate acidic strength, was more favorable for the selective conversion of furfuryl alcohol to alkyl levulinate, and heteropolyacids of strong acidic strength tended to promote furfuryl alcohol polymerization. Compared with water as a reaction medium, alcohol significantly lowered humin formation and enhanced the yield of the resulting products. The formations of humin and alkyl levulinate were both favored at high catalyst loadings and reaction temperatures. An augmentation in initial furfuryl alcohol concentration caused an increase in humin formation and a decrease in alkyl levulinate yield. A high alkyl levulinate yield of up to 94% (100% furfuryl alcohol conversion) was achieved at 110 °C for 4 h with 5 g/L Amberlyst 15 catalyst and an initial furfuryl alcohol concentration of 0.1 mol/L. At this point, about 5% furfuryl alcohol was polymerized to form the humin, and its polymerization occurred mainly during the initial reaction stage.
Applied Catalysis A-general | 2011
Lincai Peng; Lu Lin; Junhua Zhang; Jianbin Shi; Shijie Liu
Bioresource Technology | 2012
Qiulin Yang; Jianbin Shi; Lu Lin; Lincai Peng; Junping Zhuang
Journal of Agricultural and Food Chemistry | 2012
Qiulin Yang; Jianbin Shi; Lu Lin; Junping Zhuang; Chunsheng Pang; Tujun Xie; Ying Liu
Industrial Crops and Products | 2013
Jianbin Shi; Qiulin Yang; Lu Lin; Lincai Peng