Jiandong Ye
South China University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiandong Ye.
Acta Biomaterialia | 2008
Xiaopeng Qi; Jiandong Ye; Yingjun Wang
An injectable calcium phosphate cement (CPC) containing 30 wt.% poly(lactide-co-glycolide) (PLGA) microspheres was developed in the present study. Sodium citrate solution was used as the cement liquid phase. The effects of sodium citrate concentration on the injectability, rheological properties, mechanical strength and self-setting properties of CPC containing PLGA microspheres were systematically investigated. The in vitro degradation behavior of the composite during immersion in phosphate buffer solution was also studied. With an increase in sodium citrate concentration, the viscosity and yield stress of the paste were reduced, thereby improving the injectability. At a sodium citrate concentration of 15%, the injectability of the paste reached 95%. The compressive strength of the specimen was also enhanced by the addition of sodium citrate. The specimens had a compressive strength of 32.24+/-2.72 MPa at 15% sodium citrate concentration, compared to 22.15+/-3.60 MPa for the specimen without sodium citrate. The in vitro degradation results demonstrate that incorporated PLGA microspheres can provide the required high strength to CPC in the early stage, which would gradually degrade to create macropores for bone ingrowth. In conclusion, an in situ macropore-generable CPC exhibited excellent injectability and high early strength, and should be a promising material for bone repair and bone reconstruction.
Journal of Biomedical Materials Research Part A | 2009
Xiaopeng Qi; Jiandong Ye; Yingjun Wang
In this study, the alginate/calcium phosphate cement (CPC) scaffolds with oriented pore structure were fabricated by unidirectional freeze casting and poly (lactic-co-glycolic acid) (PLGA) was used to infiltrate into the macropores to strengthen the scaffolds. By modifying the liquid to powder ratio, the porosity and pore size of the alginate/CPC scaffold could be controlled. At the liquid to powder (L/P) ratio of 3.25, scaffolds possessing open directional macropores and a total porosity of 89.24% could be achieved. The size of the tubule-like macropores could reach 100-200 mum in their radial dimension and more than 1000 mum in the axial one, with macropores well-regulated arrayed. Increasing the L/P ratio would significantly decrease the mechanical strength of alginate/CPC scaffolds. The compressive strength and toughness of scaffolds could be greatly improved via PLGA reinforcement. Three mechanisms of PLGA reinforcement ran as follows: participating in the external load, strengthening the matrix, and patching the defects of CPC pores wall. Alginate/PLGA/CPC scaffold preserved the open directional macropores and might be a potential scaffold for bone tissue engineering.
Journal of Biomedical Materials Research Part A | 2012
Fupo He; Jiandong Ye
The aim of this study was to investigate the in vitro degradation, cytocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid) (PLGA)/calcium phosphate cement (CPC) scaffold with unidirectional lamellar pore structure. CPC-based scaffold was fabricated by unidirectional freeze casting, and PLGA was used to improve the mechanical properties of the CPC-based scaffold, which covered the surface of the pore wall as coating. The in vitro degradation results demonstrated that the PLGA/CPC scaffold had good degradability. The degradation of PLGA film on the surface of the scaffold made the CPC matrix exposed, which facilitated cell response and osteogenesis. Rat bone mesenchymal stem cells (rMSCs) were seeded on the PLGA/CPC composite scaffold. Cell viability, proliferation, and differentiation on the PLGA/CPC composite scaffold were evaluated. The results showed that viable rMSCs attached on the surface of pore wall gradually penetrated into the internal pores of the scaffold as prolongation of culture time. In addition, the rMSCs seeded on the scaffold exhibited good proliferation and growing alkaline phosphatase activity. The scaffold was implanted in the defects in distal end of femora of New Zealand white rabbits. Histological evaluation indicated that the PLGA/CPC scaffold with unidirectional lamellar pore structure had good biocompatibility and effective osteogenesis. These results suggest PLGA/CPC composite scaffold with unidirectional lamellar pore structure is a promising scaffold for bone tissue engineering.
Acta Biomaterialia | 2009
Tao Yu; Jiandong Ye; Yingjun Wang
A novel Sr-containing calcium phosphate cement (CPC) with excellent compressive strength, good radiopacity and suitable setting time was developed in this work. The two-step hydration reaction resulted in a high compressive strength, with a maximum of up to 74.9MPa. Sr was doped into the calcium-deficient hydroxyapatite as a hydrated product during the hydration reaction of the CPC. Because of the existence of Sr element and the compact microstructure after hydration, the Sr-containing CPC shows good radiopacity. It is expected to be used in orthopedic and maxillofacial surgery for bone defects repairing.
Journal of Wuhan University of Technology-materials Science Edition | 2012
Xiaopeng Qi; Fupo He; Jiandong Ye
The macroporous calcium phosphate(CPC) cement with oriented pore structure was prepared by freeze casting. SEM observation showed that the macropores in the porous calcium phosphate cement were interconnected aligned along the ice growth direction. The porosity of the as-prepared porous CPC was measured to be 87.6% by Archimede’s principle. XRD patterns of specimens showed that poorly crystallized hydroxyapatite was the main phase present in the hydrated porous calcium phosphate cement. To improve the mechanical properties of the CPC scaffold, the 15% gelatine solution was infiltrated into the pores under vacuum and then the samples were freeze dried to form the CPC/gelatine composite scaffolds. After reinforced with gelatine, the compressive strength of CPC/gelatine composite increased to 5.12 MPa, around fifty times greater than that of the unreinforced macroporous CPC scaffold, which was only 0.1 MPa. And the toughness of the scaffold has been greatly improved via the gelatine reinforcement with a much greater fracture strain. SEM examination of the specimens indicated good bonding between the cement and gelatine. Participating the external load by the deformable gelatine, patching the defects of the CPC pores wall, and crack deflection were supposed to be the reinforcement mechanisms. In conclusion, the calcium phosphate cement/gelatine composite with oriented pore structure prepared in this work might be a potential scaffold for bone tissue engineering.
Key Engineering Materials | 2005
Heng Chang Wang; Xiao Ping Wang; Jiandong Ye; Ying Jun Wang; Ping Gen Rao
A calcium phosphate bone substitute material was prepared and its rheological behavior and injectability were studied in this work. The effects of temperature, L/P ratio and adjuvant on the rheological properties and injectability of the pastes were discussed. The results show that the calcium phosphate bone substitute material is injectable with good fluidity and is suitable for the clinical applications. The rheological behavior and injectability of the bone substitute material can be improved by adding adjuvants and optimizing L/P ratio.
Key Engineering Materials | 2007
Xiupeng Wang; Jiandong Ye; Ling Chen; Ying Jun Wang
In this study, an ACP-DCPD based Calcium phosphate cement (CPC) scaffold with a porosity of 88% was prepared by using Na3PO4 as a poregen and then modified by collagen and chitosan. The results showed that collagen and chitosan obviously increased the compressive strength. Cell culture showed that the cell can migrate, attach, proliferate and differentiate on the surface of the materials and the pores walls. This CPC scaffold modified with collagen or chitosan was a promising material to be used in bone tissue engineering.
Key Engineering Materials | 2008
Tao Yu; Jiandong Ye
In this work, a simple, reproducible and low-cost synthesis method for the preparation of ß-tricalcium phosphate (ß-TCP) was developed. ß-TCP was prepared via wet mechanochemical treatment using calcium oxide and calcium hydrogen phosphate as raw materials. XRD and FTIR analysis indicated that the as-treated precursor was non-stoichiometric, poorly-crystallized carbonated hydroxyapatite (CHA) resulting from the mechanochemical reaction, and the crystalline ß-TCP powder was obtained by calcining the precursor at 800°C for 2 hours. SEM observation showed that the addition of surfactants could eliminate the agglomeration of the powder and well-dispersive ß-TCP powder with a particle diameter between 0.1 and 2.0 2m can be obtained.
Key Engineering Materials | 2007
Gang Wu; Ying Jun Wang; Hua Ding Lu; Xiao Feng Chen; Jiandong Ye; Cheng Yun Ning; Na Ru Zhao
In this article, a multilayer tissue engineering scaffold has been fabricated. The uppermost layer is consisted by the collagen and the downmost layer is consisted by the collagen/hydroxyapatide. Between the two layers, there have several continues changed collagen/HA layers at different ratio. These gradient scaffolds have been made by the freeze dried method. The morphology of the multiphase scaffold has been observed by the SEM. The chondrocytes from New Zealand rabbit knee joint were separated, harvested and cultured on the top layer of the scaffold. The histological and the immunohistochemical testing show that the chondrocytes keep its normal type in the 2 culture weeks.
Key Engineering Materials | 2007
Ling Chen; Hong Xiang; Xiao Xi Li; Jiandong Ye; Xiupeng Wang; Lin Li
Calcium phosphate cements (CPCs) are well-known orthopedic materials for filling bone. However, CPC pastes tend to disintegrate immediately when contacting with blood or other aqueous (body) fluids, which is a main limitation of its clinical applications in bone repairing, reconstruction and augmentation. To improve the anti-washout performance of CPC, modified starches such as pre-gelatinized starch, etherified starch, and esterified starch were added to the liquid phase of CPC in this work. CPC with good anti-washout performance was prepared and the effects of the modified starches on the properties of CPC were investigated. The results showed that the CPC with the modified starches were more stable in simulated body fluid than that without modified starch, especially the CPC with the etherified starch (II). X-ray diffraction analysis revealed that the modified starches did not inhibit CPC components from converting to hydroxyapatite. Furthermore, the anti-washout mechanism of the modified starches in CPC was discussed. It is concluded that the addition of the modified starches such as pre-gelatinized starch, etherified starch, and esterified starch to CPC can improve its anti-washout performance and should be of value in clinical surgery where the cement is exposed to blood.