Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiane Zuo is active.

Publication


Featured researches published by Jiane Zuo.


Journal of Environmental Sciences-china | 2011

Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China

Jia Lin; Jiane Zuo; Lili Gan; Peng Li; Fenglin Liu; Kaijun Wang; Lei Chen; Hainan Gan

The biochemical methane potentials for typical fruit and vegetable waste (FVW) and food waste (FW) from a northern China city were investigated, which were 0.30, 0.56 m3 CH4/kgVS (volatile solids) with biodegradabilities of 59.3% and 83.6%, respectively. Individual anaerobic digestion testes of FVW and FW we re conducted at the organic loading rate (OLR) of 3 k g VS/(m3.day) using a lab-scale continuous stirred-tank reactor at 350C. FVW could b e digested stably with the biogas production rate of 2.17 m3/(m3 .day)and methane production yield of 0.42 m3 CH4/kg VS. However, anaerobic digestion process for FW was failed due to acids accumulation. The effects of FVW: FW ratio on co-digestion stability and performance were further investigated at the same OLR. At FVW and FW mixing ratios of 2:1 and 1:1, the performance and operation of the digester were maintained stable, with no accumulation of volatile fatty acids (VFA) and ammonia. Changing the feed to a higher FW content in a ratio of FVW to FW 1:2, resulted in an increase inVFAs concentration to 1100-1200 mg/L, and the methanogenesis was slightly inhibited. At the optimum mixture ratio 1:1 for co-digestion of FVW with FW, the methane production yield was 0.49 m3 CH4/kg VS, and the volatile solids and soluble chemical oxygen demand (sCOD) removal efficiencies were 74.9% and 96.1%, respectively.


Journal of Environmental Sciences-china | 2014

Graphene-supported nanoscale zero-valent iron: Removal of phosphorus from aqueous solution and mechanistic study

Fenglin Liu; JingHe Yang; Jiane Zuo; Ding Ma; Lili Gan; Bangmi Xie; Pei Wang; Bo Yang

Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China, so finding a cost-effective method to remove phosphorus from non-point pollution sources is very important for the health of the aqueous environment. Graphene was selected to support nanoscale zero-valent iron (nZVI) for phosphorus removal from synthetic rainwater runoff in this article. Compared with nZVI supported on other porous materials, graphene-supported nZVI (G-nZVI) could remove phosphorus more efficiently. The amount of nZVI in G-nZVI was an important factor in the removal of phosphorus by G-nZVI, and G-nZVI with 20 wt.% nZVI (20% G-nZVI) could remove phosphorus most efficiently. The nZVI was very stable and could disperse very well on graphene, as characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FT-IR) and Raman spectroscopy were used to elucidate the reaction process, and the results indicated that Fe-O-P was formed after phosphorus was adsorbed by G-nZVI. The results obtained from X-ray diffraction (XRD) indicated that the reaction product between nZVI supported on graphene and phosphorus was Fe₃(PO₄)₂·8H₂O (Vivianite). It was confirmed that the specific reaction mechanism for the removal of phosphorus with nZVI or G-nZVI was mainly due to chemical reaction between nZVI and phosphorus.


Journal of Environmental Sciences-china | 2012

Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste

Jia Lin; Jiane Zuo; Ruofan Ji; Xiaojie Chen; Fenglin Liu; Kaijun Wang; Yunfeng Yang

A lab-scale continuously-stirred tank reactor (CSTR), used for anaerobic co-digestion of fruit and vegetable waste (FVW) and food waste (FW) at different mixture ratios, was operated for 178 days at the organic loading rate of 3 kg VS (volatile solids)/(m3 x day). The dynamics of the Archaeal community and the correlations between environmental variables and methanogenic community structure were analyzed by polymerase chain reactions--denaturing gradient gel electrophoresis (PCR-DGGE) and redundancy analysis (RDA), respectively. PCR-DGGE results demonstrated that the mixture ratio of FVW to FW altered the community composition of Archaea. As the FVW/FW ratio increased, Methanoculleus, Methanosaeta and Methanosarcina became the predominant methanogens in the community. Redundancy analysis results indicated that the shift of the methanogenic community was significantly correlated with the composition of acidogenic products and methane production yield. Different mixture ratios of substrates led to different compositions of intermediate metabolites, which may affect the methanogenic community. These results suggested that the analysis of microbial communities could be used to diagnose anaerobic processes.


Journal of Hazardous Materials | 2014

Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri

Xin Yu; Jiane Zuo; Xinyao Tang; Ruixia Li; Zaixing Li; Fei Zhang

The toxicity of pharmaceutical wastewaters has recently been the focus of the public in China. This study aimed to evaluate the conventional pollution parameters and toxicities of different raw and treated pharmaceutical wastewaters to algae Scenedesmus obliquus and bacteria Vibrio fischeri. Wastewater samples were collected from 16 pharmaceutical wastewater treatment plants in China. The results of the conventional parameters analysis indicated that the total suspended solids, chemical oxygen demand (COD), ammonia (NH3-N), and total phosphorus (TP) were largely removed after treatment. Pharmaceutical effluents were mainly polluted with organics and phosphorus as indicated by the average COD (388 mg/L) and TP (3.16 mg/L) concentrations. The toxicity test results indicated that the influent samples were toxic to both test species. Although the toxicities could be remarkably reduced after treatment, 10 out of the 16 effluent samples exceeded the acute toxicity discharge limit of the Chinese national standards. Spearman rank correlation coefficients indicated a significantly positive correlation between the toxicity values of S. obliquus and V. fischeri. Compared with S. obliquus, V. fischeri detected more pharmaceutical effluent samples with toxicities. Meanwhile, the toxicity indicators were significantly and positively correlated with the COD and NH3-N concentrations based on a Spearman rank correlation analysis.


Journal of Environmental Sciences-china | 2010

An autotrophic nitrogen removal process: short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate.

Jie Liu; Jiane Zuo; Yang Yang; Shuquan Zhu; Sulin Kuang; Kaijun Wang

A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate. The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L), treating about 50% of the diluted raw wastewater. The ammonium removal efficiency and the ratio of NO2- -N to NOx- -N in the effluent were both higher than 80%, at a maximum nitrogen loading rate of 1.47 kg/(m3 x ay). The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L), using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1. The ammonium and nitrite removal efficiency reached over 93% and 95%, respectively, after 70-day continuous operation, at a maximum total nitrogen loading rate of 0.91 kg/(m3 x day), suggesting a successful operation of the combined process. The average nitrogen loading rate of the combined system was 0.56 kg/(m3 x day), with an average total inorganic nitrogen removal efficiency 87%. The nitrogen in the effluent was mostly nitrate. The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate.


Water Research | 2016

Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium

Peng Li; Jiane Zuo; Yajiao Wang; Jian Zhao; Lei Tang; Zaixing Li

Tertiary nitrogen removal technologies are needed to reduce the excess nitrogen that is discharged into sensitive aquatic ecosystems. An integrated solid-phase denitrification biofilter (SDNF) was developed with dual media to remove nitrate and suspended solids (SS) from the secondary effluent of municipal wastewater treatment plants. Biodegradable polymer pellets of polycaprolactone (PCL) served as the biofiltration medium and carbon source for denitrification. Long-term continuous operation of the SDNF was conducted with real secondary effluent to evaluate the denitrification performance and effects of influent nitrate loading rates (NLR) and operating temperatures. The results indicated that both nitrate and SS were effectively removed. The SDNF had a strong tolerance for fluctuations in influent NLR, and a maximum denitrification rate of 3.80 g N/(L·d) was achieved. The low temperature had a significant impact on nitrogen removal, yet the denitrification rate was still maintained at a relative high level to as much as 1.23 g N/(L·d) even at approximately 8.0 °C in winter. Nitrite accumulation and excessive organics residue in the effluent were avoided throughout the whole experiment, except on occasional days in the lag phase. The observed biomass yield was calculated to be 0.44 kgVSS/kgPCL. The microbial diversity and community structure of the biofilm in the SDNF were revealed by Illumina high-throughput sequencing. The special carbon source led to an obvious succession of microbial community from the initial inoculum (activated sludge from aerobic tanks), and included a decrease in microbial diversity and a shift in the dominant groups, which were identified to be members of the family Comamonadaceae in the SDNF. The SDNF developed in this study was verified to be an efficient technology for tertiary nitrogen removal from secondary effluent.


Ultrasonics Sonochemistry | 2014

Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode

Bo Yang; Jiane Zuo; Xinhua Tang; Fenglin Liu; Xin Yu; Xinyao Tang; Hui Jiang; Lili Gan

A novel sonoelectrochemical catalytic oxidation-driven process using a nanocoated electrode to treat methylene blue (MB) wastewater was developed. The nano-scale (nanocoated) electrode generated more hydroxyl radicals than non-nano-scale (non-nanocoated) electrodes did. However, hydroxyl radicals were easily adsorbed by the nanomaterial and thus were not able to enter the solution. Supersonic waves were found to enhance the mass-transfer effect on the nanocoated electrode surface, resulting in rapid diffusion of the generated hydroxyl radicals into the solution. In solution, the hydroxyl radicals then reacted with organic pollutants in the presence of ultrasonic waves. The effect of the nanocoated electrode on the MB wastewater treatment process was enhanced by ultrasound when compared to the non-nanocoated electrode used under the same conditions. The synergy of the nanocoated electrode and ultrasonic waves towards MB degradation was then studied. The optimum operating conditions resulted in a 92% removal efficiency for TOC and consisted of a current of 600 mA, an ultrasound frequency of 45 kHz, and a supersonic power of 250 W. The mechanism of ultrasound enhancement of the nanocoated electrode activity with respect to MB treatment is discussed. The reaction intermediates of the sonoelectrochemical catalytic oxidation process were monitored, and degradation pathways were proposed. The sonoelectrochemical catalytic oxidation-driven process using nanocoated electrodes was found to be a very efficient method for the treatment of non-biodegradable wastewater.


Environmental Science & Technology | 2017

Nitrogen removal and N2O accumulation during hydrogenotrophic denitrification: influence of environmental factors and microbial community characteristics.

Peng Li; Yajiao Wang; Jiane Zuo; Rui Wang; Jian Zhao; Youjie Du

Hydrogenotrophic denitrification is regarded as an efficient alternative technology of removing nitrogen from nitrate-polluted water that has insufficient organics material. However, the biochemical process underlying this method has not been completely characterized, particularly with regard to the generation and reduction of nitrous oxide (N2O). In this study, the effects of key environmental factors on hydrogenotrophic denitrification and N2O accumulation were investigated in a series of batch tests. The results show that nitrogen removal was efficient with a specific denitrification rate of 0.66 kg N/(kg MLSS·d), and almost no N2O accumulation was observed when the dissolved hydrogen (DH) concentration was approximately 0.40 mg/L, the temperature was 30 °C, and the pH was 7.0. The reduction of nitrate was significantly affected by the pH, temperature, inorganic carbon (IC) content, and DH concentration. A considerable accumulation of N2O was only observed when the pH decreased to 6.0 and the temperature decreased to 15 °C, where little N2O accumulated under various IC and DH concentrations. To determine the microbial community structure, the hydrogenotrophic denitrifying enrichment culture was analyzed by Illumina high-throughput sequencing, and the dominant species were found to belong to the genera Paracoccus (26.1%), Azoarcus (24.8%), Acetoanaerobium (11.4%), Labrenzia (7.4%), and Dysgonomonas (6.0%).


Bioresource Technology | 2016

A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment

Yuanyuan Wu; Cuiping Wang; Xiaoji Liu; Hailing Ma; Jing Wu; Jiane Zuo; Kaijun Wang

A novel method of two-phase anaerobic digestion where the acid reactor is operated at low pH 4.0 was proposed and investigated. A completely stirred tank acid reactor and an up-flow anaerobic sludge bed methane reactor were operated to examine the possibility of efficient degradation of lactate and to identify their optimal operating conditions. Lactate with an average concentration of 14.8g/L was the dominant fermentative product and Lactobacillus was the predominant microorganism in the acid reactor. The effluent from the acid reactor was efficiently degraded in the methane reactor and the average methane yield was 261.4ml/gCOD removed. Organisms of Methanosaeta were the predominant methanogen in granular sludge of methane reactor, however, after acclimation hydrogenotrophic methanogens enriched, which benefited for the conversion of lactate to acetate. The two-phase AD system exhibited a low hydraulic retention time of 3.56days and high methane yield of 348.5ml/g VS removed.


Ecotoxicology and Environmental Safety | 2014

A combined evaluation of the characteristics and acute toxicity of antibiotic wastewater.

Xin Yu; Jiane Zuo; Ruixia Li; Lili Gan; Zaixing Li; Fei Zhang

The conventional parameters and acute toxicities of antibiotic wastewater collected from each treatment unit of an antibiotic wastewater treatment plant have been investigated. The investigation of the conventional parameters indicated that the antibiotic wastewater treatment plant performed well under the significant fluctuation in influent water quality. The results of acute toxicity indicated that the toxicity of antibiotic wastewater could be reduced by 94.3 percent on average after treatment. However, treated antibiotic effluents were still toxic to Vibrio fischeri. The toxicity of antibiotic production wastewater could be attributed to the joint effects of toxic compound mixtures in wastewater. Moreover, aerobic biological treatment processes, including sequencing batch reactor (SBR) and aerobic biofilm reactor, played the most important role in reducing toxicity by 92.4 percent. Pearson׳s correlation coefficients revealed that toxicity had a strong and positive linear correlation with organic substances, nitrogenous compounds, S(2-), volatile phenol, cyanide, As, Zn, Cd, Ni and Fe. Ammonia nitrogen (NH4(+)) was the greatest contributor to toxicity according to the stepwise regression method. The multiple regression model was a good fit for [TU50-15 min] as a function of [NH₄(+)] with the determination coefficient of 0.981.

Collaboration


Dive into the Jiane Zuo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Yu

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zaixing Li

Hebei University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge