Jianfei Qi
Sanford-Burnham Institute for Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianfei Qi.
Cancer Cell | 2010
Jianfei Qi; Koh Nakayama; Robert D. Cardiff; Alexander D. Borowsky; Karen L. Kaul; Roy Williams; Stan Krajewski; Dan Mercola; Philip M. Carpenter; David Bowtell; Ze'ev Ronai
Neuroendocrine (NE) phenotype, seen in >30% of prostate adenocarcinomas (PCa), and NE prostate tumors are implicated in aggressive prostate cancer. Formation of NE prostate tumors in the TRAMP mouse model was suppressed in mice lacking the ubiquitin ligase Siah2, which regulates HIF-1alpha availability. Cooperation between HIF-1alpha and FoxA2, a transcription factor expressed in NE tissue, promotes recruitment of p300 to transactivate select HIF-regulated genes, Hes6, Sox9, and Jmjd1a. These HIF-regulated genes are highly expressed in metastatic PCa and required for hypoxia-mediated NE phenotype, metastasis in PCa, and the formation of NE tumors. Tissue-specific expression of FoxA2 combined with Siah2-dependent HIF-1alpha availability enables a transcriptional program required for NE prostate tumor development and NE phenotype in PCa.
Molecular Cancer Research | 2009
Koh Nakayama; Jianfei Qi; Ze'ev Ronai
Growing evidence indicates that ubiquitin ligases play a critical role in the hypoxia response. Among them, Siah2, a RING finger ligase, is an important regulator of pathways activated under hypoxia. Siah2 regulates prolyl hydroxylases PHD3 and 1 under oxygen concentration of 2% to 5%, thereby allowing accumulation of hypoxia-inducible factor (HIF)-1α, a master regulator of the hypoxia response within the range of physiological normoxic to mild hypoxic conditions. Growing evidence also indicates an important function for Siah2 in tumor development and progression based on pancreatic cancer, mammary tumor, and melanoma mouse models. This review summarizes our current understanding of Siah2 regulation and function with emphasis on hypoxia and tumorigenesis. (Mol Cancer Res 2009;7(4):443–51)
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jianfei Qi; Koh Nakayama; Supriya Gaitonde; James S. Goydos; Stan Krajewski; Alexey Eroshkin; Dafna Bar-Sagi; David Bowtell; Ze'ev Ronai
The ubiquitin ligase Siah2 has been shown to regulate prolyl hydroxylase 3 (PHD3) stability with concomitant effect on HIF-1α availability. Because HIF-1α is implicated in tumorigenesis and metastasis, we used SW1 mouse melanoma cells, which develop primary tumors with a propensity to metastasize, in a syngeneic mouse model to assess a possible role for Siah2 in these processes. Inhibiting Siah2 activity by expressing a peptide designed to outcompete association of Siah2-interacting proteins reduced metastasis through HIF-1α without affecting tumorigenesis. Conversely, inhibiting Siah2 activity by means of a dominant-negative Siah2 RING mutant primarily reduced tumorigenesis through the action of Sprouty 2, a negative regulator of Ras signaling. Consistent with our findings, reduced expression of PHD3 and Sprouty2 was observed in more advanced stages of melanoma tumors. Using complementary approaches, our data establish the role of Siah2 in tumorigenesis and metastasis by HIF-dependent and -independent mechanisms.
Cancer Cell | 2013
Jianfei Qi; Manisha Tripathi; Rajeev Mishra; Natasha Sahgal; Ladan Fazil; Susan Ettinger; William J. Placzek; Giuseppina Claps; Leland W.K. Chung; David Bowtell; Martin Gleave; Neil A. Bhowmick; Ze'ev Ronai
Understanding the mechanism underlying the regulation of the androgen receptor (AR), a central player in the development of castration-resistant prostate cancer (CRPC), holds promise for overcoming the challenge of treating CRPC. We demonstrate that the ubiquitin ligase Siah2 targets a select pool of NCOR1-bound, transcriptionally-inactive AR for ubiquitin-dependent degradation, thereby promoting expression of select AR target genes implicated in lipid metabolism, cell motility, and proliferation. Siah2 is required for prostate cancer cell growth under androgen-deprivation conditions in vitro and in vivo, and Siah2 inhibition promotes prostate cancer regression upon castration. Notably, Siah2 expression is markedly increased in human CRPCs. Collectively, we find that selective regulation of AR transcriptional activity by the ubiquitin ligase Siah2 is important for CRPC development.
Pigment Cell & Melanoma Research | 2009
Meera Shah; John L. Stebbins; Antimone Dewing; Jianfei Qi; Maurizio Pellecchia; Ze'ev Ronai
The E3 ubiquitin ligase Siah2 has been implicated in the regulation of the hypoxia response, as well as in the control of Ras, JNK/p38/NF‐κB signaling pathways. Both Ras/mitogen‐activated protein kinase (MAPK) and hypoxia pathways are important for melanoma development and progression, pointing to the possible use of Siah2 as target for treatment of this tumor type. In the present study, we have established a high‐throughput electro‐chemiluninescent‐based assay in order to screen and identify inhibitors of Siah2 ubiquitin ligase activity. Of 1840 compounds screened, we identified and characterized menadione (MEN) as a specific inhibitor of Siah2 ligase activity. MEN attenuated Siah2 self‐ubiquitination, and increased expression of its substrates PHD3 and Sprouty2, with concomitant decrease in levels of HIF‐1α and pERK, the respective downstream effectors. MEN treatment no longer affected PHD3 or Sprouty2 in Siah‐KO cells, pointing to its Siah‐dependent effects. Further, MEN inhibition of Siah2 was not attenuated by free radical scavenger, suggesting it is ROS‐independent. Significantly, growth of xenograft melanoma tumors was inhibited following the administration of MEN or its derivative. These findings reveal an efficient platform for the identification of Siah inhibitors while identifying and characterizing MEN as Siah inhibitor that attenuates hypoxia and MAPK signaling, and inhibits melanoma tumorigenesis.
Trends in Biochemical Sciences | 2013
Ersheng Kuang; Jianfei Qi; Ze'ev Ronai
Autophagy is an evolutionarily conserved intracellular catabolic process that delivers cytoplasmic components to lysosomes for degradation and recycling. Although originally considered to be a non-selective pathway, it is now recognized that autophagy is involved in selective processes, including the turnover of organelles, removal of protein aggregates, and elimination of intracellular pathogens. This specificity implies that cargo recognition and processing by the autophagy machinery are tightly regulated processes. In support of this, various forms of post-translational modification have been implicated in the regulation of autophagy, one of which is the ubiquitin-proteasome system. Here we review current understanding of the role of ubiquitylation in the control of autophagy.
PLOS Genetics | 2012
Ersheng Kuang; Cheryl Y. M. Okumura; Sharon Sheffy-Levin; Tal Varsano; Vincent Chih-Wen Shu; Jianfei Qi; Ingrid R. Niesman; Huei-Jiun Yang; Carlos López-Otín; Wei Yuan Yang; John C. Reed; Limor Broday; Victor Nizet; Ze'ev Ronai
Autophagy is the mechanism by which cytoplasmic components and organelles are degraded by the lysosomal machinery in response to diverse stimuli including nutrient deprivation, intracellular pathogens, and multiple forms of cellular stress. Here, we show that the membrane-associated E3 ligase RNF5 regulates basal levels of autophagy by controlling the stability of a select pool of the cysteine protease ATG4B. RNF5 controls the membranal fraction of ATG4B and limits LC3 (ATG8) processing, which is required for phagophore and autophagosome formation. The association of ATG4B with—and regulation of its ubiquitination and stability by—RNF5 is seen primarily under normal growth conditions. Processing of LC3 forms, appearance of LC3-positive puncta, and p62 expression are higher in RNF5−/− MEF. RNF5 mutant, which retains its E3 ligase activity but does not associate with ATG4B, no longer affects LC3 puncta. Further, increased puncta seen in RNF5−/− using WT but not LC3 mutant, which bypasses ATG4B processing, substantiates the role of RNF5 in early phases of LC3 processing and autophagy. Similarly, RNF-5 inactivation in Caenorhabditis elegans increases the level of LGG-1/LC3::GFP puncta. RNF5−/− mice are more resistant to group A Streptococcus infection, associated with increased autophagosomes and more efficient bacterial clearance by RNF5−/− macrophages. Collectively, the RNF5-mediated control of membranalATG4B reveals a novel layer in the regulation of LC3 processing and autophagy.
Journal of Biological Chemistry | 2011
Marzia Scortegagna; Tony Subtil; Jianfei Qi; Hyungsoo Kim; Wenhui Zhao; Wei Gu; Harriet M. Kluger; Ze'ev Ronai
The RING finger E3 ubiquitin ligase Siah2 is implicated in control of diverse cellular biological events, including MAPK signaling and hypoxia. Here we demonstrate that Siah2 is subject to regulation by the deubiquitinating enzyme USP13. Overexpression of USP13 increases Siah2 stability by attenuating its autodegradation. Consequently, the ability of Siah2 to target its substrates prolyl hydroxylase 3 and Spry2 (Sprouty2) for ubiquitin-mediated proteasomal degradation is attenuated. Conversely, inhibition of USP13 expression with corresponding shRNA decreases the stability of both Siah2 and its substrate Spry2. Thus, USP13 limits Siah2 autodegradation and its ubiquitin ligase activity against its target substrates. Strikingly, the effect of USP13 on Siah2 is not mediated by its isopeptidase activity: mutations in its ubiquitin-binding sequences positioned within the ubiquitin-specific processing protease and ubiquitin-binding domains, but not within putative catalytic sites, abolish USP13 binding to and effect on Siah2 autodegradation and targeted ubiquitination. Notably, USP13 expression is attenuated in melanoma cells maintained under hypoxia, thereby relieving Siah2 inhibition and increasing its activity under low oxygen levels. Significantly, on melanoma tissue microarray, high nuclear expression of USP13 coincided with high nuclear expression of Siah2. Overall, this study identifies a new layer of Siah2 regulation mediated by USP13 binding to ubiquitinated Siah2 protein with a concomitant inhibitory effect on its activity under normoxia.
Cell Biochemistry and Biophysics | 2013
Jianfei Qi; Hyungsoo Kim; Marzia Scortegagna; Ze'ev Ronai
The Siah ubiquitin ligases are members of the RING finger E3 ligases. The Siah E3s are conserved from fly to mammals. Primarily implicated in cellular stress responses, Siah ligases play a key role in hypoxia, through the regulation of HIF-1α transcription stability and activity. Concomitantly, physiological conditions associated with varying oxygen tension often highlight the importance of Siah, as seen in cancer and neurodegenerative disorders. Notably, recent studies also point to the role of these ligases in fundamental processes including DNA damage response, cellular organization and polarity. This review summarizes the current understanding of upstream regulators and downstream effectors of Siah.
Oncogene | 2016
Lingling Fan; Guihong Peng; Natasha Sahgal; Ladan Fazli; Martin Gleave; Yuji Zhang; Arif Hussain; Jianfei Qi
The histone demethylase JMJD1A, which controls gene expression by epigenetic regulation of H3K9 methylation marks, functions in diverse activities, including spermatogenesis, metabolism and stem cell self-renewal and differentiation. Here, we found that JMJD1A knockdown in prostate cancer cells antagonizes their proliferation and survival. Profiling array analyses revealed that JMJD1A-dependent genes function in cellular growth, proliferation and survival, and implicated that the c-Myc transcriptional network is deregulated following JMJD1A inhibition. Biochemical analyses confirmed that JMJD1A enhances c-Myc transcriptional activity by upregulating c-Myc expression levels. Mechanistically, JMJD1A activity promoted recruitment of androgen receptor (AR) to the c-Myc gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA. In parallel, we found that JMJD1A regulated c-Myc stability, likely by inhibiting HUWE1, an E3 ubiquitin ligase known to target degradation of several substrates including c-Myc. JMJD1A (wild type or mutant lacking histone demethylase activity) bound to HUWE1, attenuated HUWE1-dependent ubiquitination and subsequent degradation of c-Myc, increasing c-Myc protein levels. Furthermore, c-Myc knockdown in prostate cancer cells phenocopied effects of JMJD1A knockdown, and c-Myc re-expression in JMJD1A-knockdown cells partially rescued prostate cancer cell growth in vitro and in vivo. c-Myc protein levels were positively correlated with those of JMJD1A in a subset of human prostate cancer specimens. Collectively, our findings identify a critical role for JMJD1A in regulating proliferation and survival of prostate cancer cells by controlling c-Myc expression at transcriptional and post-translational levels.