Jianfeng He
Centers for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianfeng He.
The New England Journal of Medicine | 2014
Qun Li; Lei Zhou; Minghao Zhou; Zhiping Chen; Furong Li; Huanyu Wu; Nijuan Xiang; Enfu Chen; Fenyang Tang; Dayan Wang; Ling Meng; Zhiheng Hong; Wenxiao Tu; Yang Cao; Leilei Li; Fan Ding; Bo Liu; Mei Wang; Rongheng Xie; Rongbao Gao; Xiaodan Li; Tian Bai; Shumei Zou; Jun He; Jiayu Hu; Yangting Xu; Chengliang Chai; Shiwen Wang; Yongjun Gao; Lianmei Jin
BACKGROUND The first identified cases of avian influenza A(H7N9) virus infection in humans occurred in China during February and March 2013. We analyzed data obtained from field investigations to describe the epidemiologic characteristics of H7N9 cases in China identified as of December 1, 2013. METHODS Field investigations were conducted for each confirmed case of H7N9 virus infection. A patient was considered to have a confirmed case if the presence of the H7N9 virus was verified by means of real-time reverse-transcriptase-polymerase-chain-reaction assay (RT-PCR), viral isolation, or serologic testing. Information on demographic characteristics, exposure history, and illness timelines was obtained from patients with confirmed cases. Close contacts were monitored for 7 days for symptoms of illness. Throat swabs were obtained from contacts in whom symptoms developed and were tested for the presence of the H7N9 virus by means of real-time RT-PCR. RESULTS Among 139 persons with confirmed H7N9 virus infection, the median age was 61 years (range, 2 to 91), 71% were male, and 73% were urban residents. Confirmed cases occurred in 12 areas of China. Nine persons were poultry workers, and of 131 persons with available data, 82% had a history of exposure to live animals, including chickens (82%). A total of 137 persons (99%) were hospitalized, 125 (90%) had pneumonia or respiratory failure, and 65 of 103 with available data (63%) were admitted to an intensive care unit. A total of 47 persons (34%) died in the hospital after a median duration of illness of 21 days, 88 were discharged from the hospital, and 2 remain hospitalized in critical condition; 2 patients were not admitted to a hospital. In four family clusters, human-to-human transmission of H7N9 virus could not be ruled out. Excluding secondary cases in clusters, 2675 close contacts of case patients completed the monitoring period; respiratory symptoms developed in 28 of them (1%); all tested negative for H7N9 virus. CONCLUSIONS Most persons with confirmed H7N9 virus infection had severe lower respiratory tract illness, were epidemiologically unrelated, and had a history of recent exposure to poultry. However, limited, nonsustained human-to-human H7N9 virus transmission could not be ruled out in four families.
Emerging Infectious Diseases | 2004
Rui-Heng Xu; Jianfeng He; Meirion Rhys Evans; Guo-Wen Peng; Hume E. Field; De-Wen Yu; Chin-Kei Lee; Hui-Min Luo; Wei-Sheng Lin; Peng Lin; Ling-Hui Li; Wenjia Liang; Jinyan Lin; Alan Schnur
An epidemic of severe acute respiratory syndrome (SARS) began in Foshan municipality, Guangdong Province, China, in November 2002. We studied SARS case reports through April 30, 2003, including data from case investigations and a case series analysis of index cases. A total of 1,454 clinically confirmed cases (and 55 deaths) occurred; the epidemic peak was in the first week of February 2003. Healthcare workers accounted for 24% of cases. Clinical signs and symptoms differed between children (<18 years) and older persons (>65 years). Several observations support the hypothesis of a wild animal origin for SARS. Cases apparently occurred independently in at least five different municipalities; early case-patients were more likely than later patients to report living near a produce market (odds ratio undefined; lower 95% confidence interval 2.39) but not near a farm; and 9 (39%) of 23 early patients, including 6 who lived or worked in Foshan, were food handlers with probable animal contact.
PLOS ONE | 2013
Min Kang; Haojie Zhong; Jianfeng He; Shannon Rutherford; Fen Yang
Background Google Flu Trends was developed to estimate influenza activity in many countries; however there is currently no Google Flu Trends or other Internet search data used for influenza surveillance in China. Methods and Findings Influenza surveillance data from 2008 through 2011 were obtained from provincial CDC influenza-like illness and virological surveillance systems of Guangdong, a province in south China. Internet search data were downloaded from the website of Google Trends. Pearsons correlation coefficients with 95% confidence intervals (95% CI) were calculated to compare surveillance data and internet search trends. The correlation between CDC ILI surveillance and CDC virus surveillance was 0.56 (95% CI: 0.43, 0.66). The strongest correlation was between the Google Trends term of Fever and ILI surveillance with a correlation coefficient of 0.73 (95% CI: 0.66, 0.79). When compared with influenza virological surveillance, the Google Trends term of Influenza A had the strongest correlation with a correlation coefficient of 0.64 (95% CI: 0.43, 0.79) in the 2009 H1N1 influenza pandemic period. Conclusions This study shows that Google Trends in Chinese can be used as a complementary source of data for influenza surveillance in south China. More research in the future should develop new models using search trends in Chinese language to estimate local disease activity and detect early signals of outbreaks.
Lancet Infectious Diseases | 2017
Xiling Wang; Hui Jiang; Peng Wu; Timothy M. Uyeki; Luzhao Feng; Shengjie Lai; L. Wang; Xiang Huo; Ke Xu; Enfu Chen; Xiaoxiao Wang; Jianfeng He; Min Kang; Renli Zhang; Jin Zhang; Jiabing Wu; Shixiong Hu; Hengjiao Zhang; Xiaoqing Liu; Weijie Fu; Jianming Ou; Shenggen Wu; Ying Qin; Zhijie Zhang; Yujing Shi; Juanjuan Zhang; Jean Artois; Vicky J. Fang; Huachen Zhu; Yi Guan
BACKGROUND The avian influenza A H7N9 virus has caused infections in human beings in China since 2013. A large epidemic in 2016-17 prompted concerns that the epidemiology of the virus might have changed, increasing the threat of a pandemic. We aimed to describe the epidemiological characteristics, clinical severity, and time-to-event distributions of patients infected with A H7N9 in the 2016-17 epidemic compared with previous epidemics. METHODS In this epidemiological study, we obtained information about all laboratory-confirmed human cases of A H7N9 virus infection reported in mainland China as of Feb 23, 2017, from an integrated electronic database managed by the China Center for Disease Control and Prevention (CDC) and provincial CDCs. Every identified human case of A H7N9 virus infection was required to be reported to China CDC within 24 h via a national surveillance system for notifiable infectious diseases. We described the epidemiological characteristics across epidemics, and estimated the risk of death, mechanical ventilation, and admission to the intensive care unit for patients admitted to hospital for routine clinical practice rather than for isolation purpose. We estimated the incubation periods, and time delays from illness onset to hospital admission, illness onset to initiation of antiviral treatment, and hospital admission to death or discharge using survival analysis techniques. FINDINGS Between Feb 19, 2013, and Feb 23, 2017, 1220 laboratory-confirmed human infections with A H7N9 virus were reported in mainland China, with 134 cases reported in the spring of 2013, 306 in 2013-14, 219 in 2014-15, 114 in 2015-16, and 447 in 2016-17. The 2016-17 A H7N9 epidemic began earlier, spread to more districts and counties in affected provinces, and had more confirmed cases than previous epidemics. The proportion of cases in middle-aged adults increased steadily from 41% (55 of 134) to 57% (254 of 447) from the first epidemic to the 2016-17 epidemic. Proportions of cases in semi-urban and rural residents in the 2015-16 and 2016-17 epidemics (63% [72 of 114] and 61% [274 of 447], respectively) were higher than those in the first three epidemics (39% [52 of 134], 55% [169 of 306], and 56% [122 of 219], respectively). The clinical severity of individuals admitted to hospital in the 2016-17 epidemic was similar to that in the previous epidemics. INTERPRETATION Age distribution and case sources have changed gradually across epidemics since 2013, while clinical severity has not changed substantially. Continued vigilance and sustained intensive control efforts are needed to minimise the risk of human infection with A H7N9 virus. FUNDING The National Science Fund for Distinguished Young Scholars.
Emerging Infectious Diseases | 2007
Hongjie Yu; Zijian Feng; Xianfeng Zhang; Nijuan Xiang; Yang Huai; Lei Zhou; Zhongjie Li; Cuiling Xu; Huiming Luo; Jianfeng He; Xuhua Guan; Zhengan Yuan; Yanting Li; Longshan Xu; Rongtao Hong; Xuecheng Liu; Xingyu Zhou; Wenwu Yin; Shunxiang Zhang; Yuelong Shu; Maowu Wang; Wang Y; Chin-Kei Lee; Timothy M. Uyeki; Weizhong Yang
We investigated potential sources of infection for 6 confirmed influenza A (H5N1) patients who resided in urban areas of People’s Republic of China. None had known exposure to sick poultry or poultry that died from illness, but all had visited wet poultry markets before illness.
Emerging Infectious Diseases | 2017
Changwen Ke; Chris Ka Pun Mok; Wenfei Zhu; Haibo Zhou; Jianfeng He; Wenda Guan; Jie Wu; Wenjun Song; Dayan Wang; Jiexiong Liu; Qinhan Lin; Daniel Ka Wing Chu; Lei Yang; Nanshan Zhong; Zifeng Yang; Yuelong Shu; J. S. M. Peiris
The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient’s adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.
Emerging Infectious Diseases | 2014
Peng Wu; Hui Jiang; Joseph T. Wu; Enfu Chen; Jianfeng He; Hang Zhou; Lan Wei; Juan Yang; Bingyi Yang; Ying Qin; Vicky J. Fang; Ming Li; Tim K. Tsang; Jiandong Zheng; Eric H. Y. Lau; Yu Cao; Chengliang Chai; Haojie Zhong; Zhongjie Li; Gabriel M. Leung; Luzhao Feng; George F. Gao; Benjamin J. Cowling; Hongjie Yu
Closure of live poultry markets was implemented in areas affected by the influenza virus A(H7N9) outbreak in China during winter, 2013–14. Our analysis showed that closing live poultry markets in the most affected cities of Guangdong and Zhejiang provinces was highly effective in reducing the risk for H7N9 infection in humans.
Emerging Infectious Diseases | 2012
De Wu; Jie Wu; Qiaoli Zhang; Haojie Zhong; Changwen Ke; Xiaoling Deng; Dawei Guan; Hui Li; Yonghui Zhang; Huiqiong Zhou; Jianfeng He; Linghui Li; Xingfen Yang
A disease outbreak with dengue-like symptoms was reported in Guangdong Province, China, in October 2010. Testing results confirmed that the pathogen causing the outbreak was chikungunya virus. Phylogenic analysis indicated that this virus was a member of the Indian Ocean clade of the East/Center/South African subgroup of chikungunya virus.
Emerging Infectious Diseases | 2014
Changwen Ke; Jing Lu; Jie Wu; Dawei Guan; Lirong Zou; Tie Song; Lina Yi; Xianqiao Zeng; Lijun Liang; Hanzhong Ni; Min Kang; Xin Zhang; Haojie Zhong; Jianfeng He; Jinyan Lin; Derek J. Smith; David F. Burke; Ron A. M. Fouchier; Marion Koopmans; Yonghui Zhang
Influenza A(H7N9) virus emerged in eastern China in February 2013 and continues to circulate in this region, but its ecology is poorly understood. In April 2013, the Guangdong Provincial Center for Disease Control and Prevention (CDC) implemented environmental and human syndromic surveillance for the virus. Environmental samples from poultry markets in 21 city CDCs (n = 8,942) and respiratory samples from persons with influenza-like illness or pneumonia (n = 32,342) were tested; viruses isolated from 6 environmental samples and 16 patients were sequenced. Sequence analysis showed co-circulation of 4 influenza A(H7N9) virus strains that evolved by reassortment with avian influenza A(H9N2) viruses circulating in this region. In addition, an increase in human cases starting in late 2013 coincided with an increase in influenza A H7 virus isolates detected by environmental surveillance. Co-circulation of multiple avian influenza viruses that can infect humans highlights the need for increased surveillance of poultry and potential environmental sources.
PLOS ONE | 2015
Min Kang; Jianfeng He; Tie Song; Shannon Rutherford; Jie Wu; Jinyan Lin; Guofeng Huang; Xiaohua Tan; Haojie Zhong
Background To provide an increased understanding of avian influenza A(H7N9) activity in live-poultry market in space and time and hence improve H7N9 epidemic control, an ongoing environmental sampling program in multiple live-poultry markets across Guangdong, China was conducted during March 2013–June 2014. Methods A total of 625 live-poultry markets throughout 21 prefecture areas took part in the study. A total of 10 environmental sites in markets for sampling were identified to represent 4 different poultry-related activity areas. At least 10 environmental samples were collected from each market every month. The real time RT-PCR was performed to detect the avian influenza A(H7N9) virus. Field survey was conducted to investigate the sanitation status of live-poultry markets. Results There were 109 human infections with H7N9 avian influenza in Guangdong, of which 37 (34%) died. A total of 18741 environmental swabs were collected and subjected to real-time RT-PCR test, of which 905(4.83%) were found positive for H7N9 virus. There were 201 (32.16%) markets affected by H7N9 in 16 prefecture areas. The detection of H7N9 virus in markets spiked in winter months. 63.33% markets (38/60) had no physical segregation for poultry holding, slaughter or sale zones. Closing live-poultry market significantly decreased the H7N9 detection rate from 14.83% (112/755) to 1.67% (5/300). Conclusions This study indicates the importance of live-poultry market surveillance based on environmental sampling for H7N9 Avian Influenza control. Improving live-poultry market management and sanitation and changing consumer practices are critical to reduce the risk of H7N9 infection.