Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiang-Gao Mao is active.

Publication


Featured researches published by Jiang-Gao Mao.


Journal of the American Chemical Society | 2009

BaNbO(IO3)5: A New Polar Material with a Very Large SHG Response

Chuan-Fu Sun; Chun-Li Hu; Xiang Xu; Ji-Bei Ling; Ting Hu; Fang Kong; Xi-Fa Long; Jiang-Gao Mao

By combination of Nb(5+) (having a d(0) electronic configuration) and the lone-pair-containing iodate anion, a new SHG material, BaNbO(IO(3))(5), has been prepared. It exhibits a very large SHG response (approximately 14 times that of KH(2)PO(4) and approximately 660 times that of alpha-SiO(2)) and is phase-matchable. The material has high thermal stability and a wide transparent region.


Nature Communications | 2015

A lead-halide perovskite molecular ferroelectric semiconductor

Wei-Qiang Liao; Yi Zhang; Chun-Li Hu; Jiang-Gao Mao; H. Ye; Peng-Fei Li; Songping D. Huang; Ren-Gen Xiong

Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for exploration of ferroelectricity. Therefore, the design of molecular ferroelectric semiconductors based on these hybrids provides a possibility to obtain new or high-performance semiconductor ferroelectrics. Here we investigated Pb-layered perovskites, and found the layer perovskite (benzylammonium)2PbCl4 is ferroelectric with semiconducting behaviours. It has a larger ferroelectric spontaneous polarization Ps=13 μC cm−2 and a higher Curie temperature Tc=438 K with a band gap of 3.65 eV. This finding throws light on the new properties of the hybrid organo-plumbate or stannate compounds and provides a new way to develop new semiconductor ferroelectrics.


Journal of the American Chemical Society | 2011

Explorations of new second-order nonlinear optical materials in the potassium vanadyl iodate system.

Chuan-Fu Sun; Chun-Li Hu; Xiang Xu; Bing-Ping Yang; Jiang-Gao Mao

Four new potassium vanadyl iodates based on lone-pair-containing IO(3) and second-order Jahn-Teller distorted VO(5) or VO(6) asymmetric units, namely, α-KVO(2)(IO(3))(2)(H(2)O) (Pbca), β-KVO(2)(IO(3))(2)(H(2)O) (P2(1)2(1)2(1)), K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O (P1), and K(VO)(2)O(2)(IO(3))(3) (Ima2) have been successfully synthesized by hydrothermal reactions. α-KVO(2)(IO(3))(2)(H(2)O) and β-KVO(2)(IO(3))(2)(H(2)O) exhibit two different types of 1D [VO(2)(IO(3))(2)](-) anionic chains. Neighboring VO(6) octahedra in the α-phase are corner-sharing into a 1D chain with the IO(3) groups attached on both sides of the chain in a uni- or bidentate bridging fashion, whereas those of VO(5) polyhedra in the β-phase are bridged by IO(3) groups into a right-handed helical chain with remaining IO(3) groups being grafted unidentately on both sides of the helical chain. The structure of K(4)[(VO)(IO(3))(5)](2)(HIO(3))(H(2)O)(2)·H(2)O contains novel isolated [(VO)(IO(3))(5)](2-) units composed of one VO(6) octahedron linked to five IO(3) groups and one terminal O(2-) anion. The structure of K(VO)(2)O(2)(IO(3))(3) exhibits a 1D [(VO)(2)O(2)(IO(3))(3)](-) chain in which neighboring VO(6) octahedra are interconnected by both oxo and bridging iodate anions. Most interestingly, three of four compounds are noncentrosymmetric (NCS), and K(VO)(2)O(2)(IO(3))(3) displays a very strong second-harmonic generation response of about 3.6 × KTP, which is phase matchable. It also has high thermal stability, a wide transparent region and moderate hardness as well as an excellent growth habit. Thermal analyses and optical and ferroelectric properties as well as theoretical calculations have also been performed.


Journal of the American Chemical Society | 2008

A Highly Anisotropic Cobalt(II)-Based Single-Chain Magnet: Exploration of Spin Canting in an Antiferromagnetic Array

Andrei V. Palii; Oleg S. Reu; Sergei M. Ostrovsky; Sophia I. Klokishner; Boris Tsukerblat; Zhong-Ming Sun; Jiang-Gao Mao; Andrey V. Prosvirin; Hanhua Zhao; Kim R. Dunbar

In this article we report for the first time experimental details concerning the synthesis and full characterization (including the single-crystal X-ray structure) of the spin-canted zigzag-chain compound [Co(H2L)(H2O)]infinity [L = 4-Me-C6H4-CH2N(CPO3H2)2], which contains antiferromagnetically coupled, highly magnetically anisotropic Co(II) ions with unquenched orbital angular momenta, and we also propose a new model to explain the single-chain magnet behavior of this compound. The model takes into account (1) the tetragonal crystal field and the spin-orbit interaction acting on each Co(II) ion, (2) the antiferromagnetic Heisenberg exchange between neighboring Co(II) ions, and (3) the tilting of the tetragonal axes of the neighboring Co units in the zigzag structure. We show that the tilting of the anisotropy axes gives rise to spin canting and consequently to a nonvanishing magnetization for the compound. In the case of a strong tetragonal field that stabilizes the orbital doublet of Co(II), the effective pseudo-spin-1/2 Hamiltonian describing the interaction between the Co ions in their ground Kramers doublet states is shown to be of the Ising type. An analytical expression for the static magnetic susceptibility of the infinite spin-canted chain is obtained. The model provides an excellent fit to the experimental data on both the static and dynamic magnetic properties of the chain.


Angewandte Chemie | 2015

A Facile Synthetic Route to a New SHG Material with Two Types of Parallel π-Conjugated Planar Triangular Units†

Jun-Ling Song; Chun-Li Hu; Xiang Xu; Fang Kong; Jiang-Gao Mao

A new SHG material, namely, Pb2(BO3)(NO3), which contains parallel π-conjugated nitrate and borate anions, was obtained through a facile hydrothermal reaction by using Pb(NO3)2 and Mg(BO2)2⋅H2O as starting materials. Its structure contains honeycomb [Pb2(BO3)]∞ layers with noncoordination [NO3](-) anions located at the interlayer space. Pb2(BO3)(NO3) shows a remarkable strong SHG response of approximately 9.0 times that of potassium dihydrogen phosphate (KDP) and the material is also phase-matchable. The large SHG coefficient of Pb2(BO3)(NO3) arises from the synergistic effect of the stereoactive lone pairs on Pb(2+) cations and parallel alignment of π-conjugated BO3 and NO3 units. Based on its unique properties, Pb2(BO3)(NO3) may have great potential as a high performance NLO material in photonic applications.


Advanced Materials | 2016

Bandgap Engineering of Lead‐Halide Perovskite‐Type Ferroelectrics

Heng-Yun Ye; Wei-Qiang Liao; Chun-Li Hu; Yi Zhang; Yu-Meng You; Jiang-Gao Mao; Peng-Fei Li; Ren-Gen Xiong

Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds.


Inorganic Chemistry | 2010

Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

Tianhua Zhou; Fei-Yan Yi; Pei-Xin Li; Jiang-Gao Mao

Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.


Inorganic Chemistry | 2009

Ln3Pb3(IO3)13(μ3−O) (Ln = La−Nd): New Types of Second-Order Nonlinear Optical Materials Containing Two Types of Lone Pair Cations

Ting Hu; Li Qin; Fang Kong; Yong Zhou; Jiang-Gao Mao

Hydrothermal reactions of lanthanide oxide, lead chloride, I(2)O(5), and H(2)O at 200 degrees C led to four novel quaternary compounds, namely, Ln(3)Pb(3)(IO(3))(13)(mu(3)-O) (Ln = La-Nd). They are isostructural, and their structures feature a complicated 3D network composed of LaO(9) and PbO(6) polyhedra interconnected by asymmetric IO(3) groups. Ln(3)Pb(3)(IO(3))(13)(mu(3)-O) (Ln = La, Pr, Nd) display moderate second harmonic generation efficiencies of about 2.0, 1.0, and 0.8 times the value of KH(2)PO(4), respectively. These compounds are thermally stable up to 520 degrees C. Luminescence measurements indicate that Ln(3)Pb(3)(IO(3))(13)(mu(3)-O) (Ln = Ce, Pr, Nd) exhibit strong emission bands in the visible or near IR region. Magnetic studies indicate that there exist significant antiferromagnetic interactions between magnetic centers in Ln(3)Pb(3)(IO(3))(13)(mu(3)-O) (Ln = Pr, Nd).


Inorganic Chemistry | 2013

Cs2GeB4O9: a New Second-Order Nonlinear-Optical Crystal

Xiang Xu; Chun-Li Hu; Fang Kong; Jian-Han Zhang; Jiang-Gao Mao; Junliang Sun

A new alkali-metal borogermanate with noncentrosymmetric structure, namely, Cs2GeB4O9, has been discovered, and a large crystal with dimensions of 20 × 16 × 8 mm(3) has been grown by a high-temperature top-seeded solution method using Cs2O-B2O3 as a flux. The compound crystallizes in the tetragonal space group I4 with a = b = 6.8063(2) Å, c = 9.9523(7) Å, V = 461.05(4) Å(3), and Z = 2. It features a three-dimensional anionic open framework based on GeO4 tetrahedra and B4O9 clusters that are interconnected via corner-sharing, forming one-dimensional channels of nine-/ten-membered rings along the a and b axes, which are occupied by Cs(+) cations. Cs2GeB4O9 exhibits a very high thermal stability with a melting point of 849 °C, and it possesses a short-wavelength absorption edge onset at 198 nm determined by UV-vis transmission spectroscopy measurements on a slab of polished crystal. Powder second-harmonic generation (SHG) measurement on sieved crystals reveals that Cs2GeB4O9 is a type I phase-matchable material with a strong SHG response of about 2.8 × KH2PO4. The preliminary investigation indicates that Cs2GeB4O9 is a new promising second-order nonlinear-optical crystalline material.


Polyhedron | 1998

Structural characterization and luminescence studies of new lanthanide(III) complexes with nicotinic and isonicotinic acid N-oxides

Jiang-Gao Mao; Hong-Jie Zhang; Jia-Zuan Ni; Shubin Wang; Thomas C. W. Mak

Four new polymeric lanthanide(III) complexes of nicotinic acid N-oxide and isonicotinic acid N-oxide have been synthesized and structurally determined. In the isomorphous compounds [(Ln(L-1)(3) (H2O)(2))(n)]. 4nH(2)O(HL1 = nicotinic acid N-oxide; Ln = Eu, 1; Ln = Er, 2) the lanthanide(III) ions form infinite double chains along the b direction through the coordination of bridging carboxylate and N-oxide groups. The chains are cross-linked through hydrogen bonds between aqua ligands and uncoordinated N-oxide groups and between aqua ligands and lattice water molecules, to form a three-dimensional network. [(Eu(L-2)(2)-(H2O)(4))(n)](NO3)(n). nH(2)O (HL2 = isonicotinic acid N-oxide, 3) has a polymeric structure in which the europium (III) ions are connected into infinite chains by pairs of syn-syn carboxylate groups. Adjacent chains are interlinked by hydrogen bonds between aqua ligands and N-oxide groups to form a layer parallel to the (100) plane, and such layers are connected by hydrogen bonds between nitrate anions and aqua ligands, and between oxide groups and lattice water molecules, into a three-dimensional network. In [(Er-2(L-2)(4)(H2O)(10))](NO3)(2). H2O, 4, dinuclear units are inter-linked into a three-dimensional network through hydrogen bonding between aqua ligands and N-oxide groups of both bidentate bridging and unidentate L-2 ligands. Factors affecting the formation of coordination chains and dinuclear units are discussed. Luminescence properties of 1 and 3 have also been studied

Collaboration


Dive into the Jiang-Gao Mao's collaboration.

Top Co-Authors

Avatar

Chun-Li Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fang Kong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiang Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bing-Ping Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun-Ling Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhong-Ming Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hai-Long Jiang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Chuan-Fu Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui-Yi Zeng

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge