Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiang-Yuan Hu is active.

Publication


Featured researches published by Jiang-Yuan Hu.


Neuron | 2004

Serotonin regulates the secretion and autocrine action of a neuropeptide to activate MAPK required for long-term facilitation in Aplysia

Jiang-Yuan Hu; Leonard Glickman; Fang Wu; Samuel Schacher

In Aplysia, long-term facilitation (LTF) of sensory neuron synapses requires activation of both protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). We find that 5-HT through activation of PKA regulates secretion of the sensory neuron-specific neuropeptide sensorin, which binds autoreceptors to activate MAPK. Anti-sensorin antibody blocked LTF and MAPK activation produced by 5-HT and LTF produced by medium containing sensorin that was secreted from sensory neurons after 5-HT treatment. A single application of 5-HT followed by a 2 hr incubation with sensorin produced protein synthesis-dependent LTF, growth of new presynaptic varicosities, and activation of MAPK and its translocation into sensory neuron nuclei. Inhibiting PKA during 5-HT applications and inhibiting receptor tyrosine kinase or MAPK during sensorin application blocked both LTF and MAPK activation and translocation. Thus, long-term synaptic plasticity is produced when stimuli activate kinases in a specific sequence by regulating the secretion and autocrine action of a neuropeptide.


The Journal of Neuroscience | 2006

Two Signaling Pathways Regulate the Expression and Secretion of a Neuropeptide Required for Long-Term Facilitation in Aplysia

Jiang-Yuan Hu; Fang Wu; Samuel Schacher

Activation of several signaling pathways contributes to long-term synaptic plasticity, but how brief stimuli produce coordinated activation of these pathways is not understood. In Aplysia, the long-term facilitation (LTF) of sensory neuron synapses by 5-hydroxytryptamine (serotonin; 5-HT) requires the activation of several kinases, including mitogen-activated protein kinase (MAPK). The 5-HT-enhanced secretion of the sensory neuron-specific neuropeptide sensorin mediates the activation of MAPK. We find that stimulus-induced activation of two signaling pathways, phosphoinositide 3-kinase (PI3K) and type II protein kinase A (PKA), regulate sensorin secretion and responses. Treatment with 5-HT produces a rapid increase in sensorin synthesis, especially at varicosities, which precedes the secretion of sensorin. PI3K inhibitor and rapamycin block LTF and the rapid synthesis of sensorin at varicosities even in the absence of sensory neuron cell bodies. Secretion of the newly synthesized sensorin from the varicosities and activation of the autocrine responses of sensorin to produce LTF require type II PKA interaction with AKAPs (A-kinase anchoring proteins). Thus, long-term synaptic plasticity is produced when multiple signaling pathways that are important for regulating distinct cellular functions are activated in a specific sequence and recruit the secretion of a neuropeptide to activate additional critical pathways.


The Journal of Neuroscience | 2004

The Two Regulatory Subunits of Aplysia cAMP-Dependent Protein Kinase Mediate Distinct Functions in Producing Synaptic Plasticity

Jinming Liu; Jiang-Yuan Hu; Samuel Schacher; James H. Schwartz

Activation of the cAMP-dependent protein kinase (PKA) is critical for both short- and long-term facilitation in Aplysia sensory neurons. There are two types of the kinase, I and II, differing in their regulatory (R) subunits. We cloned Aplysia RII; RI was cloned previously. Type I PKA is mostly soluble in the cell body whereas type II is enriched at nerve endings where it is bound to two prominent A kinase-anchoring-proteins (AKAPs). Disruption of the binding of RII to AKAPs by Ht31, an inhibitory peptide derived from a human thyroid AKAP, prevents both the short- and the long-term facilitation produced by serotonin (5-HT). During long-term facilitation, RII is transcriptionally upregulated; in contrast, the amount of RI subunits decreases, and previous studies have indicated that the decrease is through ubiquitin-proteosome-mediated proteolysis. Experiments with antisense oligonucleotides injected into the sensory neuron cell body show that the increase in RII protein is essential for the production of long-term facilitation. Using synaptosomes, we found that 5-HT treatment causes RII protein to increase at nerve endings. In addition, using reverse transcription-PCR, we found that RII mRNA is transported from the cell body to nerve terminals. Our results suggest that type I operates in the nucleus to maintain cAMP response element-binding protein-dependent gene expression, and type II PKA acts at sensory neuron synapses phosphorylating proteins to enhance release of neurotransmitter. Thus, the two types of the kinase have distinct but complementary functions in the production of facilitation at synapses of an identified neuron.


The Journal of Neuroscience | 2007

Protein Kinase C Regulates Local Synthesis and Secretion of a Neuropeptide Required for Activity-Dependent Long-Term Synaptic Plasticity

Jiang-Yuan Hu; Yang Chen; Samuel Schacher

Long-term facilitation (LTF) of sensory neuron synapses in Aplysia is produced by either nonassociative or associative stimuli. Nonassociative LTF can be produced by five spaced applications of serotonin (5-HT) and requires a phosphoinosotide 3-kinase (PI3K)-dependent and rapamycin-sensitive increase in the local synthesis of the sensory neuron neuropeptide sensorin and a protein kinase A (PKA)-dependent increase in the secretion of the newly synthesized sensorin. We report here that associative LTF produced by a single pairing of a brief tetanus with one application of 5-HT requires a rapid protein kinase C (PKC)-dependent and rapamycin-sensitive increase in local sensorin synthesis. This rapid increase in sensorin synthesis does not require PI3K activity or the presence of the sensory neuron cell body but does require the presence of the motor neuron. The secretion of newly synthesized sensorin by 2 h after stimulation requires both PKA and PKC activities to produce associative LTF because incubation with exogenous anti-sensorin antibody or the kinase inhibitors after tetanus plus 5-HT blocked LTF. The secreted sensorin leads to phosphorylation and translocation of p42/44 mitogen-activated protein kinase (MAPK) into the nuclei of the sensory neurons. Thus, different stimuli activating different signaling pathways converge by regulating the synthesis and release of a neuropeptide to produce long-term synaptic plasticity.


The Journal of Neuroscience | 2009

Poly-(ADP-Ribose) Polymerase-1 Is Necessary for Long-Term Facilitation in Aplysia

Hernández Ai; Wolk J; Jiang-Yuan Hu; Jinming Liu; Kurosu T; James H. Schwartz; Samuel Schacher

Activity-dependent long-term synaptic plasticity requires gene expression and protein synthesis. Identifying essential genes and studying their transcriptional and translational regulation are key steps to understanding how synaptic changes become long lasting. Recently, the enzyme poly-(ADP-ribose) polymerase 1 (PARP-1) was shown to be necessary for long-term memory (LTM) in Aplysia. Since PARP-1 decondenses chromatin, we hypothesize that this enzyme regulates the expression of specific genes essential for long-term synaptic plasticity that underlies LTM. We cloned Aplysia PARP-1 (ApPARP-1) and determined that its expression in sensory neurons is necessary for serotonin (5-HT)-mediated long-term facilitation (LTF) of sensorimotor neuron synapses. PARP enzymatic activity is also required, since transient application of PARP inhibitors blocked LTF. Differential display and RNA analysis of ganglia dissected from intact animals exposed to 5-HT identified the ribosomal RNA genes as PARP-dependent effector genes. The increase in the expression of rRNAs is long lasting and dynamic. Pulse-labeling RNA studies showed a PARP-dependent increase in rRNAs but not in the total RNA 24 h after 5-HT treatment. Moreover, the expression of both the AprpL27a (Aplysia ribosomal protein L27a) and the ApE2N (Aplysia ubiquitin-conjugating enzyme E2N) mRNAs also increased after 5-HT. Thus, our results suggest that 5-HT, in part by regulating PARP-1 activity, alters the expression of transcripts required for the synthesis of new ribosomes necessary for LTF.


The Journal of Neuroscience | 2011

Persistent Long-Term Synaptic Plasticity Requires Activation of a New Signaling Pathway by Additional Stimuli

Jiang-Yuan Hu; Orit Baussi; Amir Levine; Yang Chen; Samuel Schacher

Most memories are strengthened by additional stimuli, but it is unclear how additional stimulation or training reinforces long-term memory. To address this we examined whether long-term facilitation (LTF) of Aplysia sensorimotor synapses in cell culture—a cellular correlate of long-term sensitization of defensive withdrawal reflexes in Aplysia californica—can be prolonged by additional stimulation. We found that 1 d treatment with serotonin (5-HT; five brief applications at 20 min intervals) produced LTF lasting ∼3 d, whereas 2 d of such 5-HT treatments induced a persistent LTF lasting >7 d. Incubation with the protein synthesis inhibitor rapamycin during the second set of 5-HT treatments abolished all facilitation, and synapse strength returned prematurely to baseline. Persistent LTF required more persistent elevation in the expression of the neurotrophin-like peptide sensorin and its secretion. Activation of protein kinase C (PKC) during the second day of 5-HT treatments, not required for LTF or changes in sensorin expression during the first set of 5-HT treatments, is critical for persistent LTF and replaces phosphoinositide 3 kinase (PI3K) activity in mediating the increase in sensorin expression. In contrast, activations of PKC during the first day of 5-HT treatments and PI3K during the second day of 5-HT treatments are unnecessary for persistent LTF or the increases in sensorin expression. Thus, additional stimuli make preexisting plasticity labile as they recruit a new signaling cascade to regulate the synthesis of a neurotrophin-like peptide required for persistent alterations in synaptic efficacy.


The Journal of Neuroscience | 2006

Two mRNA-Binding Proteins Regulate the Distribution of Syntaxin mRNA in Aplysia Sensory Neurons

Jinming Liu; Jiang-Yuan Hu; Fang Wu; James H. Schwartz; Samuel Schacher

Targeting mRNAs to different functional domains within neurons is crucial to memory storage. In Aplysia sensory neurons, syntaxin mRNA accumulates at the axon hillock during long-term facilitation of sensory-motor neuron synapses produced by serotonin (5-HT). We find that the 3′ untranslated region of Aplysia syntaxin mRNA has two targeting elements, the cytosolic polyadenylation element (CPE) and stem-loop double-stranded structures that appear to interact with mRNA-binding proteins CPEB and Staufen. Blocking the interaction between these targeting elements and their RNA-binding proteins abolished both accumulation at the axon hillock and long-term facilitation. CPEB, which we previously have shown to be upregulated after stimulation with 5-HT, is required for the relocalization of syntaxin mRNA to the axon hillock from the opposite pole in the cell body of the sensory neuron during long-term facilitation, whereas Staufen is required for maintaining the accumulation of the mRNA both at the axon hillock after the treatment with 5-HT and at the opposite pole in stable, unstimulated sensory neurons. Thus, the cooperative actions of the two mRNA-binding proteins serve to direct the distribution of an mRNA encoding a key synaptic protein.


The Journal of Neuroscience | 2004

Target-dependent release of a presynaptic neuropeptide regulates the formation and maturation of specific synapses in Aplysia.

Jiang-Yuan Hu; Jonathan Goldman; Fang Wu; Samuel Schacher

The correct wiring of neurons is critical for the normal functioning of the nervous system. Sensory neurons of Aplysia form synapses with specific postsynaptic targets. Interaction with appropriate target cells in culture induces a significant increase in axon growth, the number of sensory neuron varicosities with release sites contacting the target, and regulates the expression and distribution of mRNAs encoding presynaptic proteins such as syntaxin and the sensory neuron-specific neuropeptide sensorin. Synapse stabilization is accompanied by the maintenance of presynaptic varicosities and target-dependent regulation of mRNA distributions. We report here that specific targets induce the release of sensorin from sensory neurons, which then regulates synaptic efficacy, axonal growth associated with synapse formation, the maintenance of synaptic contacts, and the specific distribution of mRNAs. Bath application of an antisensorin antibody during the early phase of synapse formation blocked the expected increase in synaptic strength, the growth and formation of new presynaptic varicosities, and the target-dependent regulation of mRNA distribution. In contrast, bath application of sensorin accelerated the increase in synaptic strength and enhanced the formation of new varicosities and target-dependent regulation of mRNA distribution in sensory neurons. As synapses stabilize, sensorin secretion declines but is required for the maintenance of synaptic efficacy, presynaptic varicosities, and mRNA distributions. These results suggest that a retrograde target signal regulates the secretion and actions of a presynaptic neuropeptide critical for the formation and maintenance of specific synapses.


The Journal of Neuroscience | 2015

cJun and CREB2 in the Postsynaptic Neuron Contribute to Persistent Long-Term Facilitation at a Behaviorally Relevant Synapse

Jiang-Yuan Hu; Amir Levine; Ying-Ju Sung; Samuel Schacher

Basic region leucine zipper (bZIP) transcription factors regulate gene expression critical for long-term synaptic plasticity or neuronal excitability contributing to learning and memory. At sensorimotor synapses of Aplysia, changes in activation or expression of CREB1 and CREB2 in sensory neurons are required for long-term synaptic plasticity. However, it is unknown whether concomitant stimulus-induced changes in expression and activation of bZIP transcription factors in the postsynaptic motor neuron also contribute to persistent long-term facilitation (P-LTF). We overexpressed various forms of CREB1, CREB2, or cJun in the postsynaptic motor neuron L7 in cell culture to examine whether these factors contribute to P-LTF. P-LTF is evoked by 2 consecutive days of 5-HT applications (2 5-HT), while a transient form of LTF is produced by 1 day of 5-HT applications (1 5-HT). Significant increases in the expression of both cJun and CREB2 mRNA in L7 accompany P-LTF. Overexpressing each bZIP factor in L7 did not alter basal synapse strength, while coexpressing cJun and CREB2 in L7 evoked persistent increases in basal synapse strength. In contrast, overexpressing cJun and CREB2 in sensory neurons evoked persistent decreases in basal synapse strength. Overexpressing wild-type cJun or CREB2, but not CREB1, in L7 can replace the second day of 5-HT applications in producing P-LTF. Reducing cJun activity in L7 blocked P-LTF evoked by 2 5-HT. These results suggest that expression and activation of different bZIP factors in both presynaptic and postsynaptic neurons contribute to persistent change in synapse strength including stimulus-dependent long-term synaptic plasticity.


Learning & Memory | 2014

The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory

Samuel Schacher; Jiang-Yuan Hu

An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for stimulus-induced changes in synapse strength and their reversals to be functionally relevant, cellular mechanisms must regulate and maintain synapse strength both prior to and after the stimuli inducing learning and memory. The strengths of synapses within a neural circuit at any given moment are determined by cellular and molecular processes initiated during development and those subsequently regulated by the history of direct activation of the neural circuit and system-wide stimuli such as stress or motivational state. The cumulative actions of stimuli and other factors on an already modified neural circuit are attenuated by homeostatic mechanisms that prevent changes in overall synaptic inputs and excitability above or below specific set points (synaptic scaling). The mechanisms mediating synaptic scaling prevent potential excitotoxic alterations in the circuit but also may attenuate additional cellular changes required for learning and memory, thereby apparently limiting information storage. What cellular and molecular processes control synaptic strengths before and after experience/activity and its reversals? In this review we will explore the synapse-, whole cell-, and circuit level-specific processes that contribute to an overall zero sum-like set of changes and long-term maintenance of synapse strengths as a consequence of the accommodative interactions between long-term synaptic plasticity and homeostasis.

Collaboration


Dive into the Jiang-Yuan Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Liu

Columbia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna K. Bougie

Montreal Neurological Institute and Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge