Jiangdian Song
Northeastern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiangdian Song.
IEEE Transactions on Medical Imaging | 2016
Jiangdian Song; Caiyun Yang; Li Fan; Kun Wang; Feng Yang; Shiyuan Liu; Jie Tian
The accurate segmentation of lung lesions from computed tomography (CT) scans is important for lung cancer research and can offer valuable information for clinical diagnosis and treatment. However, it is challenging to achieve a fully automatic lesion detection and segmentation with acceptable accuracy due to the heterogeneity of lung lesions. Here, we propose a novel toboggan based growing automatic segmentation approach (TBGA) with a three-step framework, which are automatic initial seed point selection, multi-constraints 3D lesion extraction and the final lesion refinement. The new approach does not require any human interaction or training dataset for lesion detection, yet it can provide a high lesion detection sensitivity (96.35%) and a comparable segmentation accuracy with manual segmentation (P > 0.05), which was proved by a series assessments using the LIDC-IDRI dataset (850 lesions) and in-house clinical dataset (121 lesions). We also compared TBGA with commonly used level set and skeleton graph cut methods, respectively. The results indicated a significant improvement of segmentation accuracy . Furthermore, the average time consumption for one lesion segmentation was under 8 s using our new method. In conclusion, we believe that the novel TBGA can achieve robust, efficient and accurate lung lesion segmentation in CT images automatically.
Scientific Reports | 2016
Jiangdian Song; Zaiyi Liu; Wen-Zhao Zhong; Yanqi Huang; Zelan Ma; Di Dong; Changhong Liang; Jie Tian
This was a retrospective study to investigate the predictive and prognostic ability of quantitative computed tomography phenotypic features in patients with non-small cell lung cancer (NSCLC). 661 patients with pathological confirmed as NSCLC were enrolled between 2007 and 2014. 592 phenotypic descriptors was automatically extracted on the pre-therapy CT images. Firstly, support vector machine (SVM) was used to evaluate the predictive value of each feature for pathology and TNM clinical stage. Secondly, Cox proportional hazards model was used to evaluate the prognostic value of these imaging signatures selected by SVM which subjected to a primary cohort of 138 patients, and an external independent validation of 61 patients. The results indicated that predictive accuracy for histopathology, N staging, and overall clinical stage was 75.16%, 79.40% and 80.33%, respectively. Besides, Cox models indicated the signatures selected by SVM: “correlation of co-occurrence after wavelet transform” was significantly associated with overall survival in the two datasets (hazard ratio [HR]: 1.65, 95% confidence interval [CI]: 1.41–2.75, p = 0.010; and HR: 2.74, 95%CI: 1.10–6.85, p = 0.027, respectively). Our study indicates that the phenotypic features might provide some insight in metastatic potential or aggressiveness for NSCLC, which potentially offer clinical value in directing personalized therapeutic regimen selection for NSCLC.
European Radiology | 2018
Xinzhong Zhu; Di Dong; Zhendong Chen; Mengjie Fang; Liwen Zhang; Jiangdian Song; Dongdong Yu; Yali Zang; Zhenyu Liu; Jingyun Shi; Jie Tian
ObjectivesTo distinguish squamous cell carcinoma (SCC) from lung adenocarcinoma (ADC) based on a radiomic signatureMethodsThis study involved 129 patients with non-small cell lung cancer (NSCLC) (81 in the training cohort and 48 in the independent validation cohort). Approximately 485 features were extracted from a manually outlined tumor region. The LASSO logistic regression model selected the key features of a radiomic signature. Receiver operating characteristic curve and area under the curve (AUC) were used to evaluate the performance of the radiomic signature in the training and validation cohorts.ResultsFive features were selected to construct the radiomic signature for histologic subtype classification. The performance of the radiomic signature to distinguish between lung ADC and SCC in both training and validation cohorts was good, with an AUC of 0.905 (95% confidence interval [CI]: 0.838 to 0.971), sensitivity of 0.830, and specificity of 0.929. In the validation cohort, the radiomic signature showed an AUC of 0.893 (95% CI: 0.789 to 0.996), sensitivity of 0.828, and specificity of 0.900.ConclusionsA unique radiomic signature was constructed for use as a diagnostic factor for discriminating lung ADC from SCC. Patients with NSCLC will benefit from the proposed radiomic signature.Key points• Machine learning can be used for auxiliary distinguish in lung cancer.• Radiomic signature can discriminate lung ADC from SCC.• Radiomics can help to achieve precision medical treatment.
Translational Oncology | 2017
Chen Shen; Zhenyu Liu; Min Guan; Jiangdian Song; Yucheng Lian; Shuo Wang; Zhenchao Tang; Di Dong; Lingfei Kong; Meiyun Wang; Dapeng Shi; Jie Tian
OBJECTIVE: To compare 2D and 3D radiomics features prognostic performance differences in CT images of non-small cell lung cancer (NSCLC). METHOD: We enrolled 588 NSCLC patients from three independent cohorts. Two sets of 463 patients from two different institutes were used as the training cohort. The remaining cohort with 125 patients was set as the validation cohort. A total of 1014 radiomics features (507 2D features and 507 3D features correspondingly) were assessed. Based on the dichotomized survival data, 2D and 3D radiomics indicators were calculated for each patient by trained classifiers. We used the area under the receiver operating characteristic curve (AUC) to assess the prediction performance of trained classifiers (the support vector machine and logistic regression). Kaplan–Meier and Cox hazard survival analyses were also employed. Harrells concordance index (C-Index) and Akaikes information criteria (AIC) were applied to assess the trained models. RESULTS: Radiomics indicators were built and compared by AUCs. In the training cohort, 2D_AUC = 0.653, 3D_AUC = 0.671. In the validation cohort, 2D_AUC = 0.755, 3D_AUC = 0.663. Both 2D and 3D trained indicators achieved significant results (P < .05) in the Kaplan-Meier analysis and Cox regression. In the validation cohort, 2D Cox model had a C-Index = 0.683 and AIC = 789.047; 3D Cox model obtained a C-Index = 0.632 and AIC = 799.409. CONCLUSION: Both 2D and 3D CT radiomics features have a certain prognostic ability in NSCLC, but 2D features showed better performance in our tests. Considering the cost of the radiomics features calculation, 2D features are more recommended for use in the current study.
international conference of the ieee engineering in medicine and biology society | 2016
Jun Wang; Xia Liu; Di Dong; Jiangdian Song; Min Xu; Yali Zang; Jie Tian
Lung cancer is the leading cause of cancer mortality around the world, the early diagnosis of lung cancer plays a very important role in therapeutic regimen selection. However, lung cancers are spatially and temporally heterogeneous; this limits the use of invasive biopsy. But radiomics which refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features has the ability to capture intra-tumoural heterogeneity in a non-invasive way. Here we carry out a radiomic analysis of 150 features quantifying lung tumour image intensity, shape and texture. These features are extracted from 593 patients computed tomography (CT) data on Lung Image Database Consortium Image Database Resource Initiative (LIDC-IDRI) dataset. By using support vector machine, we find that a large number of quantitative radiomic features have diagnosis power. The accuracy of prediction of malignant of lung tumor is 86% in training set and 76.1% in testing set. As CT imaging of lung tumor is widely used in routine clinical practice, our radiomic classifier will be a valuable tool which can help clinical doctor diagnose the lung cancer.Lung cancer is the leading cause of cancer mortality around the world, the early diagnosis of lung cancer plays a very important role in therapeutic regimen selection. However, lung cancers are spatially and temporally heterogeneous; this limits the use of invasive biopsy. But radiomics which refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features has the ability to capture intra-tumoural heterogeneity in a non-invasive way. Here we carry out a radiomic analysis of 150 features quantifying lung tumour image intensity, shape and texture. These features are extracted from 593 patients computed tomography (CT) data on Lung Image Database Consortium Image Database Resource Initiative (LIDC-IDRI) dataset. By using support vector machine, we find that a large number of quantitative radiomic features have diagnosis power. The accuracy of prediction of malignant of lung tumor is 86% in training set and 76.1% in testing set. As CT imaging of lung tumor is widely used in routine clinical practice, our radiomic classifier will be a valuable tool which can help clinical doctor diagnose the lung cancer.
Translational Oncology | 2018
Liwen Zhang; Bojiang Chen; Xia Liu; Jiangdian Song; Mengjie Fang; Chaoen Hu; Di Dong; Weimin Li; Jie Tian
OBJECTIVES: To predict epidermal growth factor receptor (EGFR) mutation status using quantitative radiomic biomarkers and representative clinical variables. METHODS: The study included 180 patients diagnosed as of non-small cell lung cancer (NSCLC) with their pre-therapy computed tomography (CT) scans. Using a radiomic method, 485 features that reflect the heterogeneity and phenotype of tumors were extracted. Afterwards, these radiomic features were used for predicting epidermal growth factor receptor (EGFR) mutation status by a least absolute shrinkage and selection operator (LASSO) based on multivariable logistic regression. As a result, we found that radiomic features have prognostic ability in EGFR mutation status prediction. In addition, we used radiomic nomogram and calibration curve to test the performance of the model. RESULTS: Multivariate analysis revealed that the radiomic features had the potential to build a prediction model for EGFR mutation. The area under the receiver operating characteristic curve (AUC) for the training cohort was 0.8618, and the AUC for the validation cohort was 0.8725, which were superior to prediction model that used clinical variables alone. CONCLUSION: Radiomic features are better predictors of EGFR mutation status than conventional semantic CT image features or clinical variables to help doctors to decide who need EGFR tyrosine kinase inhibitor (TKI) treatment.
Clinical Cancer Research | 2018
Jiangdian Song; Jingyun Shi; Di Dong; Mengjie Fang; Wen-Zhao Zhong; Kun Wang; Ning Wu; Yanqi Huang; Zhenyu Liu; Yue Cheng; Yuncui Gan; Yongzhao Zhou; Ping Zhou; Bojiang Chen; Changhong Liang; Zaiyi Liu; Weimin Li; Jie Tian
Purpose: We established a CT-derived approach to achieve accurate progression-free survival (PFS) prediction to EGFR tyrosine kinase inhibitors (TKI) therapy in multicenter, stage IV EGFR-mutated non–small cell lung cancer (NSCLC) patients. Experimental Design: A total of 1,032 CT-based phenotypic characteristics were extracted according to the intensity, shape, and texture of NSCLC pretherapy images. On the basis of these CT features extracted from 117 stage IV EGFR-mutant NSCLC patients, a CT-based phenotypic signature was proposed using a Cox regression model with LASSO penalty for the survival risk stratification of EGFR-TKI therapy. The signature was validated using two independent cohorts (101 and 96 patients, respectively). The benefit of EGFR-TKIs in stratified patients was then compared with another stage-IV EGFR-mutant NSCLC cohort only treated with standard chemotherapy (56 patients). Furthermore, an individualized prediction model incorporating the phenotypic signature and clinicopathologic risk characteristics was proposed for PFS prediction, and also validated by multicenter cohorts. Results: The signature consisted of 12 CT features demonstrated good accuracy for discriminating patients with rapid and slow progression to EGFR-TKI therapy in three cohorts (HR: 3.61, 3.77, and 3.67, respectively). Rapid progression patients received EGFR TKIs did not show significant difference with patients underwent chemotherapy for progression-free survival benefit (P = 0.682). Decision curve analysis revealed that the proposed model significantly improved the clinical benefit compared with the clinicopathologic-based characteristics model (P < 0.0001). Conclusions: The proposed CT-based predictive strategy can achieve individualized prediction of PFS probability to EGFR-TKI therapy in NSCLCs, which holds promise of improving the pretherapy personalized management of TKIs. Clin Cancer Res; 24(15); 3583–92. ©2018 AACR.
Proceedings of SPIE | 2017
Jiangdian Song; Yali Zang; Weimin Li; Wenzhao Zhong; Jingyun Shi; Di Dong; Mengjie Fang; Zaiyi Liu; Jie Tian
Accurately predict the risk of disease progression and benefit of tyrosine kinase inhibitors (TKIs) therapy for stage IV non-small cell lung cancer (NSCLC) patients with activing epidermal growth factor receptor (EGFR) mutations by current staging methods are challenge. We postulated that integrating a classifier consisted of multiple computed tomography (CT) phenotypic features, and other clinicopathological risk factors into a single model could improve risk stratification and prediction of progression-free survival (PFS) of EGFR TKIs for these patients. Patients confirmed as stage IV EGFR-mutant NSCLC received EGFR TKIs with no resection; pretreatment contrast enhanced CT performed at approximately 2 weeks before the treatment was enrolled. A six-CT-phenotypic-feature-based classifier constructed by the LASSO Cox regression model, and three clinicopathological factors: pathologic N category, performance status (PS) score, and intrapulmonary metastasis status were used to construct a nomogram in a training set of 115 patients. The prognostic and predictive accuracy of this nomogram was then subjected to an external independent validation of 107 patients. PFS between the training and independent validation set is no statistical difference by Mann-Whitney U test (P = 0.2670). PFS of the patients could be predicted with good consistency compared with the actual survival. C-index of the proposed individualized nomogram in the training set (0·707, 95%CI: 0·643, 0·771) and the independent validation set (0·715, 95%CI: 0·650, 0·780) showed the potential of clinical prognosis to predict PFS of stage IV EGFR-mutant NSCLC from EGFR TKIs. The individualized nomogram might facilitate patient counselling and individualise management of patients with this disease.
Archive | 2018
Jie Tian; Di Dong; Zhenyu Liu; Yali Zang; Jingwei Wei; Jiangdian Song; Wei Mu; Shuo Wang; Mu Zhou
Radiomics, as a newly emerging technology, converts medical images into high-dimensional data via high-throughput extraction of quantitative features, followed by subsequent data analysis for decision support. It identifies general diagnostic or prognostic phenotypes with target clinical need, providing an unprecedented opportunity to improve individualized treatment in cancer at low cost. In this chapter, we will introduce radiomics from its development to its clinical applications. We divide the clinical applications into three sections based on three most common medical modality, including computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET), to give a comprehensive introduction of how radiomics works with the example of a typical cancer type. The workflow and detailed technology skills are well described in each section.
international conference of the ieee engineering in medicine and biology society | 2016
Jiangdian Song; Di Dong; Yanqi Huang; Yali Zang; Zaiyi Liu; Jie Tian
For non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations, current staging methods do not accurately predict the risk of disease recurrence after tyrosine kinase inhibitors (TKI) therapy. Developing a noninvasive method to predict whether individual could benefit from TKI therapy has great clinical significance. In this research, a radiomics approach was proposed to determine whether the tumor heterogeneity of NSCLC, which was measured by the texture on computed tomography (CT), could make an independent prediction of progression-free survival (PFS). A primary dataset contained 80 patients (median PFS, 9.5 months) with positive EGFR mutations and a validation dataset contained 72 NSCLC (median PFS, 10.2 months) patients were used for prognosis trial. The experiment results indicated that the features: “Cluster Prominence of Gray Level Co-occurrence” (hazard ratio [HR]: 2.13, 95% confidence interval [CI]: (1.33, 3.40), P = 0.010) and “Short Run High Gray Level Emphasis of Run Length” (HR: 2.43, 95%CI: (1.46, 4.05), P = 0.005) were significantly associated with PFS in the primary dataset, and these two texture features also make a consistent performance on the validation cohort. Our study further supported that the quantitative measurement of tumor heterogeneity can be associated with prognosis of NSCLC patients with EGFR mutation.