Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiangfeng Du is active.

Publication


Featured researches published by Jiangfeng Du.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Binding of blood proteins to carbon nanotubes reduces cytotoxicity

Cuicui Ge; Jiangfeng Du; Lina Zhao; Liming Wang; Ying Liu; Denghua Li; Yanlian Yang; Ruhong Zhou; Yuliang Zhao; Zhifang Chai; Chunying Chen

With the potential wide uses of nanoparticles such as carbon nanotubes in biomedical applications, and the growing concerns of nanotoxicity of these engineered nanoparticles, the importance of nanoparticle–protein interactions cannot be stressed enough. In this study, we use both experimental and theoretical approaches, including atomic force microscope images, fluorescence spectroscopy, CD, SDS-PAGE, and molecular dynamics simulations, to investigate the interactions of single-wall carbon nanotubes (SWCNTs) with human serum proteins, and find a competitive binding of these proteins with different adsorption capacity and packing modes. The π-π stacking interactions between SWCNTs and aromatic residues (Trp, Phe, Tyr) are found to play a critical role in determining their adsorption capacity. Additional cellular cytotoxicity assays, with human acute monocytic leukemia cell line and human umbilical vein endothelial cells, reveal that the competitive bindings of blood proteins on the SWCNT surface can greatly alter their cellular interaction pathways and result in much reduced cytotoxicity for these protein-coated SWCNTs, according to their respective adsorption capacity. These findings have shed light toward the design of safe carbon nanotube nanomaterials by comprehensive preconsideration of their interactions with human serum proteins.


Toxicology Letters | 2011

Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain

Lili Zhang; Ru Bai; Bai Li; Cuicui Ge; Jiangfeng Du; Ying Liu; Laurent Le Guyader; Yuliang Zhao; Yanchuan Wu; Shida He; Yongmei Ma; Chunying Chen

The rising commercial use and large-scale production of engineered nanoparticles (NPs) may lead to unintended exposure to humans. The central nervous system (CNS) is a potential susceptible target of the inhaled NPs, but so far the amount of studies on this aspect is limited. Here, we focus on the potential neurological lesion in the brain induced by the intranasally instilled titanium dioxide (TiO₂) particles in rutile phase and of various sizes and surface coatings. Female mice were intranasally instilled with four different types of TiO₂ particles (i.e. two types of hydrophobic particles in micro- and nano-sized without coating and two types of water-soluble hydrophilic nano-sized particles with silica surface coating) every other day for 30 days. Inductively coupled plasma mass spectrometry (ICP-MS) were used to determine the titanium contents in the sub-brain regions. Then, the pathological examination of brain tissues and measurements of the monoamine neurotransmitter levels in the sub-brain regions were performed. We found significant up-regulation of Ti contents in the cerebral cortex and striatum after intranasal instillation of hydrophilic TiO₂ NPs. Moreover, TiO₂ NPs exposure, in particular the hydrophilic NPs, caused obvious morphological changes of neurons in the cerebral cortex and significant disturbance of the monoamine neurotransmitter levels in the sub-brain regions studied. Thus, our results indicate that the surface modification of the NPs plays an important role on their effects on the brain. In addition, the difference in neurotoxicity of the two types of hydrophilic NPs may be induced by the shape differences of the materials. The present results suggest that physicochemical properties like size, shape and surface modification of the nanomaterials should be considered when evaluating their neurological effects.


Nanotoxicology | 2012

Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes.

Cuicui Ge; Li Meng; Ligeng Xu; Ru Bai; Jiangfeng Du; Lili Zhang; Yang Li; Yanzhong Chang; Yuliang Zhao; Chunying Chen

Abstract As a novel kind of nanomaterial with wide potential applications, the adverse effects of carbon nanotubes (CNTs) have recently received significant attention after respiratory exposure. In this study, single-wall carbon nanotubes (SWCNTs) containing different metal contents were intratracheally instilled into lungs of spontaneously hypertensive rats. Pulmonary and cardiovascular system alterations were evaluated at 24 and 72 h post-instillation. Biomarkers of inflammation, oxidative stress and cell damage in the bronchoalveolar lavage fluid (BALF) were increased significantly 24 h post-exposure of SWCNTs. The increased endothelin-1 levels in BALF and plasma and angiotensin I-converting enzyme in plasma suggested endothelial dysfunction in the pulmonary circulation and peripheral vascular thrombosis. These findings suggest that respiratory exposure to SWCNTs can induce acute pulmonary and cardiovascular responses and individuals with existing cardiovascular diseases are very susceptible to SWCNTs exposure. The co-existence of metal residues in SWCNTs can aggravate the adverse effects.


ACS Nano | 2017

Polyoxometalate-Based Radiosensitization Platform for Treating Hypoxic Tumors by Attenuating Radioresistance and Enhancing Radiation Response

Yuan Yong; Chunfang Zhang; Zhanjun Gu; Jiangfeng Du; Zhao Guo; Xinghua Dong; Jiani Xie; Guangjin Zhang; Xiangfeng Liu; Yuliang Zhao

Radioresistance is one of the undesirable impediments in hypoxic tumors, which sharply diminishes the therapeutic effectiveness of radiotherapy and eventually results in the failure of their treatments. An attractive strategy for attenuating radioresistance is developing an ideal radiosensitization system with appreciable radiosensitization capacity to attenuate tumor hypoxia and reinforce radiotherapy response in hypoxic tumors. Therefore, we describe the development of Gd-containing polyoxometalates-conjugated chitosan (GdW10@CS nanosphere) as a radiosensitization system for simultaneous extrinsic and intrinsic radiosensitization, by generating an overabundance of cytotoxic reactive oxygen species (ROS) using high-energy X-ray stimulation and mediating the hypoxia-inducible factor-1a (HIF-1a) siRNA to down-regulate HIF-1α expression and suppress broken double-stranded DNA self-healing. Most importantly, the GdW10@CS nanospheres have the capacity to promote the exhaustion of intracellular glutathione (reduced GSH) by synergy W6+-triggered GSH oxidation for sufficient ROS generation, thereby facilitating the therapeutic efficiency of radiotherapy. As a result, the as-synthesized GdW10@CS nanosphere can overcome radioresistance of hypoxic tumors through a simultaneous extrinsic and intrinsic strategy to improve radiosensitivity. We have demonstrated GdW10@CS nanospheres with special radiosensitization behavior, which provides a versatile approach to solve the critical radioresistance issue of hypoxic tumors.


Advanced Materials | 2017

Synthesis of BSA-Coated BiOI@Bi2S3 Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor

Zhao Guo; Shuang Zhu; Yuan Yong; Xiao Zhang; Xinghua Dong; Jiangfeng Du; Jiani Xie; Qing Wang; Zhanjun Gu; Yuliang Zhao

Developing an effective theranostic nanoplatform remains a great challenge for cancer diagnosis and treatment. Here, BiOI@Bi2 S3 @BSA (bovine serum albumin) semiconductor heterojunction nanoparticles (SHNPs) for triple-combination radio/photodynamic/photothermal cancer therapy and multimodal computed tomography/photoacoustic (CT/PA) bioimaging are reported. On the one hand, SHNPs possess strong X-ray attenuation capability since they contain high-Z elements, and thus they are anticipated to be a very competent candidate as radio-sensitizing materials for radiotherapy enhancement. On the other hand, as a semiconductor, the as-prepared SHNPs offer an extra approach for reactive oxygen species generation based on electron-hole pair under the irradiation of X-ray through the photodynamic therapy process. This X-ray excited photodynamic therapy obviously has better penetration depth in bio-tissue. Whats more, the SHNPs also possess well photothermal conversion efficiency for photothermal therapy, because Bi2 S3 is a thin band semiconductor with strong near-infrared absorption that can cause local overheat. In vivo tumor ablation studies show that synergistic radio/photodynamic/photothermal therapy achieves more significant therapeutic effect than any single treatment. In addition, with the strong X-ray attenuation and high near-infrared absorption, the as-obtained SHNPs can also be applied as a multimodal contrast agent in CT/PA imaging.


Advanced Materials | 2017

Poly(Vinylpyrollidone)‐ and Selenocysteine‐Modified Bi2Se3 Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues

Jiangfeng Du; Zhanjun Gu; Liang Yan; Yuan Yong; Xuan Yi; Xiao Zhang; Jing Liu; Renfei Wu; Cuicui Ge; Chunying Chen; Yuliang Zhao

The development of a new generation of nanoscaled radiosensitizers that can not only enhance radiosensitization of tumor tissues, but also increase radioresistance of healthy tissue is highly desirable, but remains a great challenge. Here, this paper reports a new versatile theranostics based on poly(vinylpyrollidone)- and selenocysteine-modified Bi2 Se3 nanoparicles (PVP-Bi2 Se3 @Sec NPs) for simultaneously enhancing radiotherapeutic effects and reducing the side-effects of radiation. The as-prepared nanoparticles exhibit significantly enhanced free-radical generation upon X-ray radiation, and remarkable photothermal effects under 808 nm NIR laser irradiation because of their strong X-ray attenuation ability and high NIR absorption capability. Moreover, these PVP-Bi2 Se3 @Sec NPs are biodegradable. In vivo, part of selenium can be released from NPs and enter the blood circulation system, which can enhance the immune function and reduce the side-effects of radiation in the whole body. As a consequence, improved superoxide dismutase and glutathione peroxidase activities, promoted secretion of cytokines, increased number of white blood cell, and reduced marrow DNA suppression are found after radiation treatment in vivo. Moreover, there is no significant in vitro and in vivo toxicity of PVP-Bi2 Se3 @Sec NPs during the treatment, which demonstrates that PVP-Bi2 Se3 @Sec NPs have good biocompatibility.


ACS Applied Materials & Interfaces | 2017

Therapeutic Nanoparticles Based on Curcumin and Bamboo Charcoal Nanoparticles for Chemo-Photothermal Synergistic Treatment of Cancer and Radioprotection of Normal Cells

Jiani Xie; Yuan Yong; Xinghua Dong; Jiangfeng Du; Zhao Guo; Linji Gong; Shuang Zhu; Gan Tian; Shicang Yu; Zhanjun Gu; Yuliang Zhao

Low water solubility, extensive metabolism, and drug resistance are the existing unavoidable disadvantages of the insoluble drug curcumin in biomedical applications. Herein, we employed d-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-functionalized near-infrared (NIR)-triggered photothermal mesoporous nanocarriers with bamboo charcoal nanoparticles (TPGS-BCNPs) to load and deliver curcumin for improving its bioavailability. This system could considerably increase the accumulation of curcumin in cancer cells for enhanced curcumin bioavailability via simultaneously promoting the cellular internalization of the as-synthesized composite (TPGS-BCNPs@curcumin) by the size effect of NPs and considerably triggering controlled curcumin release from TPGS-BCNPs@curcumin by NIR stimulation and reducing efflux of curcumin by the P-glycoprotein (P-gp) inhibition of TPGS, so as to enhance the therapeutic effect of curcumin and realize a better chemo-photothermal synergetic therapy in vitro and in vivo. Besides cancer therapy, studies indicated that curcumin and some carbon materials could be used as radical scavengers that play an important role in the radioprotection of normal cells. Hence, we also investigated the free-radical-scavenging ability of the TPGS-BCNPs@curcumin composite in vitro to preliminarily evaluate its radioprotection ability for healthy tissues. Therefore, our work provides a multifunctional delivery system for curcumin bioavailability enhancement, chemo-photothermal synergetic therapy of cancer, and radioprotection of healthy tissues.


Science China-chemistry | 2017

Functional tumor imaging based on inorganic nanomaterials

Jiangfeng Du; Xiao Zhang; Liang Yan; Rui Chen

Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties. We highlighted recent advances in the applications of inorganic nanoparticles regarding their imaging efficacy, focusing on tumor-imaging nanomaterials such as metal-based and carbon-based nanomaterials and quantum dots. Inorganic nanoparticles gain excellent in vivo tumor-imaging functions based on their specific characteristics of strong near-infrared optical absorption and/or X-ray attenuation capability. The specific response signals from these novel nanomaterials can be captured using a series of imaging techniques, i.e., optical coherence tomography (OCT), X-ray computed tomography (CT) imaging, two-photon luminescence (TPL), photoacoustic tomography (PAT), magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS) and positron emission tomography (PET). In this review, we summarized the rapid development of inorganic nanomaterial applications using these analysis techniques and discussed the related safety issues of these materials.


Biomaterials | 2019

Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement

Ruyi Zhou; Huamei Wang; Yufei Yang; Chenyang Zhang; Xinghua Dong; Jiangfeng Du; Liang Yan; Guangjin Zhang; Zhanjun Gu; Yuliang Zhao

Radioresistance resulted from the intrinsic features of tumors often gives rise to unsatisfied therapeutic outcome. In particular, the tumor microenvironment (TME) with abundant antioxidants, elevated hydrogen peroxide (H2O2) and hypoxia has been believed as a tremendous obstacle for radiotherapy. Therefore, developing an effective radiosensitizer in response to both X-ray and the TME is highly imperative but remains a challenge so far. Here, we for the first time explore bismuth heteropolytungstate (BiP5W30) nanoclusters as radiosensitizers for the TME-manipulated enhancement of radiotherapy. On the one hand, BiP5W30 nanoclusters can increase radiation dose deposition within tumors by high-Z elements like Bi and W. On the other hand, in virtue of the unique electron structure and multi-electron property, they have the capability of depleting glutathione (GSH) via redox reaction and catalyzing the decomposition of H2O2 to HO to enhance ROS generation upon X-ray radiation. Moreover, reduced graphene oxide (rGO) coupled with BiP5W30 can further improve radiocatalytic activity through promoting electron-hole separation. Simultaneously, due to the considerable near-infrared absorption of rGO, photothermal therapy can overcome the tumor hypoxia microenvironment and thus synergize with radiotherapy. In addition to providing a promising radiosensitizer, this finding is expected to extend the application of polyoxometalates used in the biomedical field.


Advanced Materials | 2018

X‐Ray‐Controlled Generation of Peroxynitrite Based on Nanosized LiLuF4:Ce3+ Scintillators and their Applications for Radiosensitization

Zhen Du; Xiao Zhang; Zhao Guo; Jiani Xie; Xinghua Dong; Shuang Zhu; Jiangfeng Du; Zhanjun Gu; Yuliang Zhao

Peroxynitrite (ONOO- ), the reaction product derived from nitric oxide (NO) and superoxide (O2 -• ), is a potent oxidizing and nitrating agent that modulates complex biological processes and promotes cell death. Therefore, it can be expected that the overproduction of ONOO- in tumors can be an efficient approach in cancer therapy. Herein, a multifunctional X-ray-controlled ONOO- generation platform based on scintillating nanoparticles (SCNPs) and UV-responsive NO donors Roussins black salt is reported, and consequently the mechanism of their application in enhanced therapeutic efficacy of radiotherapy is illustrated. Attributed to the radioluminescence and high X-ray-absorbing property of SCNPs, the nanocomposite can produce NO and O2 -• simultaneously when excited by X-ray irradiation. Such simultaneous release of NO and O2 -• ensures the efficient X-ray-controlled generation of ONOO- in tumors. Meanwhile, the application of X-rays as the excitation source can achieve better penetration depth and induce radiotherapy in this nanotherapeutic platform. It is found that the X-ray-controlled ONOO- -generation platform can efficiently improve the radiotherapy efficiency via directly damaging DNA, downregulating the expression of the DNA-repair enzyme, and overcoming the hypoxia-associated resistance in radiotherapy. Therefore, this SCNP-based platform may provide a new combinatorial strategy of ONOO- and radiotherapy to improve cancer treatment.

Collaboration


Dive into the Jiangfeng Du's collaboration.

Top Co-Authors

Avatar

Yuliang Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunying Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhanjun Gu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Cuicui Ge

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinghua Dong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuan Yong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiani Xie

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ru Bai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge