Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianghua Li is active.

Publication


Featured researches published by Jianghua Li.


Microbial Cell Factories | 2011

Microbial production of hyaluronic acid: current state, challenges, and perspectives

Long Liu; Yanfeng Liu; Jianghua Li; Guocheng Du; Jian Chen

Hyaluronic acid (HA) is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid with a molecular weight up to 6 million Daltons. With excellent viscoelasticity, high moisture retention capacity, and high biocompatibility, HA finds a wide-range of applications in medicine, cosmetics, and nutraceuticals.Traditionally HA was extracted from rooster combs, and now it is mainly produced via streptococcal fermentation. Recently the production of HA via recombinant systems has received increasing interest due to the avoidance of potential toxins. This work summarizes the research history and current commercial market of HA, and then deeply analyzes the current state of microbial production of HA by Streptococcus zooepidemicus and recombinant systems, and finally discusses the challenges facing microbial HA production and proposes several research outlines to meet the challenges.


Bioresource Technology | 2010

Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source.

Yunfeng Zhu; Jianghua Li; Ming Tan; Long Liu; Lili Jiang; Jun Sun; Pengsoon Lee; Guocheng Du; Jian Chen

Propionic acid production by Propionibacterium acidipropionici with glycerol as sole carbon source was studied in 7-L batch and 10m(3) bioreactor cultures. In batch cultures, propionic acid production increased and specific cell growth rate decreased with increasing glycerol concentrations. Maximum propionic acid production and productivity reached 44.62+/-1.12g/L and 0.20+/-0.0075gL(-1)h(-1)at 220h, respectively, when glycerol was fed at a constant rate of 0.01L/h from 72 to 120h with an initial glycerol concentration of 30g/L. In the 10m(3) bioreactor, maximum propionic acid production reached 47.28+/-0.12g/L at 240h. This glycerol feeding approach may be useful for propionic acid production on an industrial scale.


Bioresource Technology | 2010

Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation.

Zhihao Wang; Yun Wang; Dongxu Zhang; Jianghua Li; Zhaozhe Hua; Guocheng Du; Jian Chen

Alkaline polygalacturonate lyase (PGL) production by Pichia pastoris GS115 was used as a model to study the mechanism and strategy for enhancing heterologous protein production. In order to enhance cell viability and volumetric recombinant protein productivity, sorbitol, which had been confirmed to be a non-repressive carbon source, was added together with methanol during the induction phase. The resultant PGL activity was up to 1593 U mL(-1), which was enhanced 1.85-fold compared to the control (863 U mL(-1)) cultured with sorbitol added at a constant rate of 3.6 g h(-1)L(-1) after an induction period of 100 h. Further results revealed that an appropriate sorbitol co-feeding strategy not only decreased the cell mortality to 8.8% (the control is about 23.1%) in the end of fermentation, but also reduced the proteolytic degradation of PGL.


Applied Microbiology and Biotechnology | 2013

Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology

Long Liu; Yanfeng Liu; Hyun-dong Shin; Rachel R. Chen; Nam Sun Wang; Jianghua Li; Guocheng Du; Jian Chen

Increasing concerns over limited petroleum resources and associated environmental problems are motivating the development of efficient cell factories to produce chemicals, fuels, and materials from renewable resources in an environmentally sustainable economical manner. Bacillus spp., the best characterized Gram-positive bacteria, possesses unique advantages as a host for producing microbial enzymes and industrially important biochemicals. With appropriate modifications to heterologous protein expression and metabolic engineering, Bacillus species are favorable industrial candidates for efficiently converting renewable resources to microbial enzymes, fine chemicals, bulk chemicals, and fuels. Here, we summarize the recent advances in developing Bacillus spp. as a cell factory. We review the available genetic tools, engineering strategies, genome sequence, genome-scale structure models, proteome, and secretion pathways, and we list successful examples of enzymes and industrially important biochemicals produced by Bacillus spp. Furthermore, we highlight the limitations and challenges in developing Bacillus spp. as a robust and efficient production host, and we discuss in the context of systems and synthetic biology the emerging opportunities and future research prospects in developing Bacillus spp. as a microbial cell factory.


Metabolic Engineering | 2014

Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production

Yanfeng Liu; Yanqiu Zhu; Jianghua Li; Hyun-dong Shin; Rachel R. Chen; Guocheng Du; Long Liu; Jian Chen

In previous work, we constructed a recombinant Bacillus subtilis strain for microbial production of N-acetylglucosamine (GlcNAc), which has applications in nutraceuticals and pharmaceuticals. In this work, we improve GlcNAc production through modular engineering of B. subtilis. Specifically, the GlcNAc synthesis-related metabolic network in B. subtilis was divided into three modules-GlcNAc synthesis, glycolysis, and peptidoglycan synthesis. First, two-promoter systems with different promoter types and strengths were used for combinatorial assembly of expression cassettes of glmS (encoding GlcN-6-phosphate synthase) and GNA1 (encoding GlcNAc-6-phosphate N-acetyltransferase) at transcriptional levels in the GlcNAc synthesis module, resulting in a 32.4% increase in GlcNAc titer (from 1.85g/L to 2.45g/L) in shake flasks. In addition, lactate and acetate synthesis were blocked by knockout of ldh (encoding lactate dehydrogenase) and pta (encoding phosphotransacetylase), leading to a 44.9% increase in GlcNAc production (from 2.45g/L to 3.55g/L) in shake flasks. Then, various strengths of the glycolysis and peptidoglycan synthesis modules were constructed by repressing the expression of pfk (encoding 6-phosphofructokinase) and glmM (encoding phosphoglucosamine mutase) via the expression of various combinations of synthetic small regulatory RNAs and Hfq protein. Next, GlcNAc, glycolysis, and peptidoglycan synthesis modules with various strengths were assembled and optimized via a module engineering approach, and the GlcNAc titer was improved to 8.30g/L from 3.55g/L in shake flasks. Finally, the GlcNAc titer was further increased to 31.65g/L, which was 3.8-fold that in the shake flask, in a 3-L fed-batch bioreactor. This work significantly enhanced GlcNAc production through modular pathway engineering of B. subtilis, and the engineering strategies used herein may be useful for the construction of versatile B. subtilis cell factories for the production of other industrially important chemicals.


Critical Reviews in Biotechnology | 2012

Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives.

Long Liu; Yunfeng Zhu; Jianghua Li; Miao Wang; Pengsoon Lee; Guocheng Du; Jian Chen

Propionic acid (PA) is an important building block chemical and finds a variety of applications in organic synthesis, food, feeding stuffs, perfume, paint and pharmaceutical industries. Presently, PA is mainly produced by petrochemical route. With the continuous increase in oil prices, public concern about environmental pollution, and the consumers’ desire for bio-based natural and green ingredients in foods and pharmaceuticals, PA production from propionibacteria has attracted considerable attention, and substantial progresses have been made on microbial PA production. However, production of PA by propionibacteria is facing challenges such as severe inhibition of end-products during cell growth and the formation of by-products (acetic acid and succinic acid). The integration of reverse metabolic engineering and systematic metabolic engineering provides an opportunity to significantly improve the acid tolerance of propionibacteria and reduce the formation of by-products, and makes it feasible to strengthen the commercial competition of biotechnological PA production from propionibacteria to be comparable to the petrochemical route.


Metabolic Engineering | 2012

Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor

Chunyu Zhang; Long Liu; Liping Teng; Jinghua Chen; Jian Liu; Jianghua Li; Guocheng Du; Jian Chen

As a precursor of bioengineered heparin, heparosan is currently produced from Escherichia coli K5, which is pathogenic bacteria potentially causing urinary tract infection. Thus, it would be advantageous to develop an alternative source of heparosan from a non-pathogeneic strain. In this work we reported the biosynthesis of heparosan via the metabolic engineering of non-pathogenic E. coli BL21 as a production host. Four genes, KfiA, KfiB, KfiC and KfiD, encoding enzymes for the biosynthesis of heparosan in E. coli K5, were cloned into inducible plasmids pETDuet-1 and pRSFDuet-1 and further transformed into E. coli BL21, yielding six recombinant strains as follows: sA, sC, sAC, sABC, sACD and sABCD. The single expression of KfiA (sA) or KfiC (sC) in E. coli BL21 did not produce heparosan, while the co-expression of KfiA and KfiC (sAC) could produce 63 mg/L heparosan in shake flask. The strain sABC and sACD could produce 100 and 120 mg/L heparosan, respectively, indicating that the expression of KfiB or KfiD was beneficial for heparosan production. The strain sABCD could produce 334 mg/L heparosan in shake flask and 652 mg/L heparosan in 3-L batch bioreactor. The heparosan yield was further increased to 1.88 g/L in a dissolved oxygen-stat fed-batch culture in 3-L bioreactor. As revealed by the nuclear magnetic resonance analysis, the chemical structure of heparosan from recombinant E. coli BL21 and E. coli K5 was identical. The weight average molecular weight of heparosan from E. coli K5, sAC, sABC, sACD, and sABCD was 51.67, 39.63, 91.47, 64.51, and 118.30 kDa, respectively. This work provides a viable process for the production of heparosan as a precursor of bioengineered heparin from a safer bacteria strain.


Journal of Biotechnology | 2013

Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.

Haiquan Yang; Long Liu; Hyun-dong Shin; Rachel R. Chen; Jianghua Li; Guocheng Du; Jian Chen

This work aims to improve the protein stability and catalytic efficiency of α-amylase from Bacillus subtilis under acidic conditions by site-directed mutagenesis. Based on the analysis of a three dimensional structure model, four basic histidine (His) residues His(222), His(275), His(293), and His(310) in the catalytic domain were selected as the mutation sites and were further replaced with acidic aspartic acid (Asp), respectively, yielding four mutants H222D, H275D, H293D, H310D. The mutant H222D was inactive. Double and triple mutations were further conducted and four mutants H275/293D, H275/310D, H293/310D, and H275/293/310D were obtained. The acidic stability of enzyme was significantly enhanced after mutation, and 45-92% of initial activity of mutants was retained after incubation at pH 4.5 and 25°C for 24h, while that for wild-type was only 39.5%. At pH 4.5, the specific activity of wild-type and mutants H275D, H293D, H310D, H275/293D, H275/310D, H293/310D, and H275/293/310D were 108.2, 131.8, 138.9, 196.6, 156.3, 204.6, and 216.2U/mg, respectively. The catalytic efficiency for each active mutant was much higher than that of wild-type at low pH. The kcat/Km values of the mutants H275D, H293D, H310D, H275/293D, H275/310D, H293/310D, and H275/293/310D at pH 4.5 were 3.3-, 4.3-, 6.5-, 4.5-, 11.0-, 14.5-, and 16.7-fold higher, respectively, than that of the wild-type. As revealed by the structure models of the wild-type and mutant enzymes, the hydrogen bonds and salt bridges were increased after mutation, and an obvious shift of the basic limb toward acidity was observed for mutants. These changes around the catalytic domain contributed to the significantly improved protein stability and catalytic efficiency at low pH. This work provides an effective strategy to improve the catalytic activity and stability of α-amylase under acidic conditions, and the results obtained here may be useful for the improvement of acid-resistant ability of other enzymes.


Bioengineered bugs | 2013

How to achieve high-level expression of microbial enzymes: Strategies and perspectives

Long Liu; Haiquan Yang; Hyun-dong Shin; Rachel R. Chen; Jianghua Li; Guocheng Du; Jian Chen

Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field.


Bioresource Technology | 2011

Overproduction of alkaline polygalacturonate lyase in recombinant Escherichia coli by a two-stage glycerol feeding approach.

Shuying Fang; Jianghua Li; Long Liu; Guocheng Du; Jian Chen

This work aims to achieve the overproduction of alkaline polygalacturonate lyase (PGL) with recombinant Escherichia coli by a two-stage glycerol feeding approach. First, the PGL coding gene from Bacillus subtilis WSHB04-02 was expressed in E. coli BL21 (DE3) under the strong inducible T7 promoter of the pET20b (+) vector. And then the influence of media composition, induction temperature, and inducer isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration on cell growth and PGL production was investigated. Finally, a two-stage glycerol feeding strategy was proposed and applied in a 3-L fermenter, where cultivation was conducted at a controlled specific growth rate (μset=0.2) during pre-induction phase, followed by a constant glycerol feeding rate of 12 ml h(-1) at post-induction phase. The total PGL yield reached 371.86 U mL(-1), which is the highest PGL production by recombinant E. coli expression system.

Collaboration


Dive into the Jianghua Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun-dong Shin

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel R. Chen

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge