Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianghui Hou is active.

Publication


Featured researches published by Jianghui Hou.


Journal of Clinical Investigation | 2008

Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex

Jianghui Hou; Aparna Renigunta; Martin Konrad; Antonio S. Gomes; Eveline E. Schneeberger; David L. Paul; Siegfried Waldegger; Daniel A. Goodenough

Tight junctions (TJs) play a key role in mediating paracellular ion reabsorption in the kidney. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an inherited disorder caused by mutations in the genes encoding the TJ proteins claudin-16 (CLDN16) and CLDN19; however, the mechanisms underlying the roles of these claudins in mediating paracellular ion reabsorption in the kidney are not understood. Here we showed that in pig kidney epithelial cells, CLDN19 functioned as a Cl(-) blocker, whereas CLDN16 functioned as a Na(+) channel. Mutant forms of CLDN19 that are associated with FHHNC were unable to block Cl(-) permeation. Coexpression of CLDN16 and CLDN19 generated cation selectivity of the TJ in a synergistic manner, and CLDN16 and CLDN19 were observed to interact using several criteria. In addition, disruption of this interaction by introduction of FHHNC-causing mutant forms of either CLDN16 or CLDN19 abolished their synergistic effect. Our data show that CLDN16 interacts with CLDN19 and that their association confers a TJ with cation selectivity, suggesting a mechanism for the role of mutant forms of CLDN16 and CLDN19 in the development of FHHNC.


Journal of Cell Science | 2005

Paracellin-1 and the modulation of ion selectivity of tight junctions

Jianghui Hou; David L. Paul; Daniel A. Goodenough

Tight junctions play a key selectivity role in the paracellular conductance of ions. Paracellin-1 is a member of the tight junction claudin protein family and mutations in the paracellin-1 gene cause a human hereditary disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) with severe renal Mg2+ wasting. The mechanism of paracellin-1 function and its role in FHHNC are not known. Here, we report that in LLC-PK1 epithelial cells paracellin-1 modulated the ion selectivity of the tight junction by selectively and significantly increasing the permeability of Na+ (with no effects on Cl-) and generated a high permeability ratio of Na+ to Cl-. Mutagenesis studies identified a locus of amino acids in paracellin-1 critical for this function. Mg2+ flux across cell monolayers showed a far less-pronounced change (compared to monovalent alkali cations) following exogenous protein expression, suggesting that paracellin-1 did not form Mg2+-selective paracellular channels. We hypothesize that in the thick ascending limb of the nephron, paracellin-1 dysfunction, with a concomitant loss of cation selectivity, could contribute to the dissipation of the lumen-positive potential that is the driving force for the reabsorption of Mg2+.


Journal of Biological Chemistry | 2006

Study of Claudin Function by RNA Interference

Jianghui Hou; Antonio S. Gomes; David L. Paul; Daniel A. Goodenough

Claudins are tight junction proteins that play a key selectivity role in the paracellular conductance of ions. Numerous studies of claudin function have been carried out using the overexpression strategy to add new claudin channels to an existing paracellular protein background. Here, we report the systematic knockdown of endogenous claudin gene expression in Madin-Darby canine kidney (MDCK) cells and in LLC-PK1 cells using small interfering RNA against claudins 1-4 and 7. In MDCK cells (showing cation selectivity), claudins 2, 4, and 7 are powerful effectors of paracellular Na+ permeation. Removal of claudin-2 depressed the permeation of Na+ and resulted in the loss of cation selectivity. Loss of claudin-4 or -7 expression elevated the permeation of Na+ and enhanced the proclivity of the tight junction for cations. On the other hand, LLC-PK1 cells express little endogenous claudin-2 and show anion selectivity. In LLC-PK1 cells, claudin-4 and -7 are powerful effectors of paracellular Cl- permeation. Knockdown of claudin-4 or -7 expression depressed the permeation of Cl- and caused the tight junction to lose the anion selectivity. In conclusion, claudin-2 functions as a paracellular channel to Na+ to increase the cation selectivity of the tight junction; claudin-4 and -7 function either as paracellular barriers to Na+ or as paracellular channels to Cl-, depending upon the cellular background, to decrease the cation selectivity of the tight junction.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium

Jianghui Hou; Aparna Renigunta; Antonio S. Gomes; Mingli Hou; David L. Paul; Siegfried Waldegger; Daniel A. Goodenough

Claudins are tight junction integral membrane proteins that are key regulators of the paracellular pathway. Defects in claudin-16 (CLDN16) and CLDN19 function result in the inherited human renal disorder familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). Previous studies showed that siRNA knockdown of CLDN16 in mice results in a mouse model for FHHNC. Here, we show that CLDN19-siRNA mice also developed the FHHNC symptoms of chronic renal wasting of magnesium and calcium together with defective renal salt handling. siRNA knockdown of CLDN19 caused a loss of CLDN16 from tight junctions in the thick ascending limb (TAL) without a decrease in CLDN16 expression level, whereas siRNA knockdown of CLDN16 produced a similar effect on CLDN19. In both mouse lines, CLDN10, CLDN18, occludin, and ZO-1, normal constituents of TAL tight junctions, remained correctly localized. CLDN16- and CLDN19-depleted tight junctions had normal barrier function but defective ion selectivity. These data, together with yeast two-hybrid binding studies, indicate that a heteromeric CLDN16 and CLDN19 interaction was required for assembling them into the tight junction structure and generating cation-selective paracellular channels.


Journal of Biological Chemistry | 2007

Transgenic RNAi Depletion of Claudin-16 and the Renal Handling of Magnesium

Jianghui Hou; Qixian Shan; Tong Wang; Antonio S. Gomes; QingShang Yan; David L. Paul; Markus Bleich; Daniel A. Goodenough

Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a human disorder caused by mutations in the tight junction protein claudin-16. However, the molecular mechanisms underlining the renal handling of magnesium and its dysfunction causing FHHNC are unknown. Here we show that claudin-16 plays a key role in maintaining the paracellular cation selectivity of the thick ascending limbs of the nephron. Using RNA interference, we have generated claudin-16-deficient mouse models. Claudin-16 knock-down (KD) mice exhibit chronic renal wasting of magnesium and calcium and develop renal nephrocalcinosis. Our data suggest that claudin-16 forms a non-selective paracellular cation channel, rather than a selective Mg2+/Ca2+ channel as previously proposed. Our study highlights the pivotal importance of the tight junction in renal control of ion homeostasis and provides answer to the pathogenesis of FHHNC. We anticipate our study to be a starting point for more sophisticated in vivo analysis of tight junction proteins in renal functions. Furthermore, tight junction proteins could be major targets of drug development for electrolyte disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization

Jianghui Hou; Aparna Renigunta; Jing Yang; Siegfried Waldegger

Tight junctions (TJs) play a key role in mediating paracellular ion reabsorption in the kidney. The paracellular pathway in the collecting duct of the kidney is a predominant route for transepithelial chloride reabsorption that determines the extracellular NaCl content and the blood pressure. However, the molecular mechanisms underlying the paracellular chloride reabsorption in the collecting duct are not understood. Here we showed that in mouse kidney collecting duct cells, claudin-4 functioned as a Cl– channel. A positively charged lysine residue at position 65 of claudin-4 was critical for its anion selectivity. Claudin-4 was observed to interact with claudin-8 using several criteria. In the collecting duct cells, the assembly of claudin-4 into TJ strands required its interaction with claudin-8. Depletion of claudin-8 resulted in the loss of paracellular chloride conductance, through a mechanism involving its recruitment of claudin-4 during TJ assembly. Together, our data show that claudin-4 interacts with claudin-8 and that their association is required for the anion-selective paracellular pathway in the collecting duct, suggesting a mechanism for coupling chloride reabsorption with sodium reabsorption in the collecting duct.


The EMBO Journal | 2012

Claudin‐14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway

Yongfeng Gong; Vijayaram Renigunta; Nina Himmerkus; Jiaqi Zhang; Aparna Renigunta; Markus Bleich; Jianghui Hou

The paracellular claudin channel of the thick ascending limb (TAL) of Henle is critical for Ca++ reabsorption in the kidney. Genome‐wide association studies (GWASs) have identified claudin‐14 associated with hypercalciuric nephrolithiasis. Here, we show that claudin‐14 promoter activity and transcript are exclusively localized in the TAL. Under normal dietary condition, claudin‐14 proteins are suppressed by two microRNA molecules (miR‐9 and miR‐374). Both microRNAs directly target the 3′‐UTR of claudin‐14 mRNA; induce its mRNA decay and translational repression in a synergistic manner. Through physical interaction, claudin‐14 blocks the paracellular cation channel made of claudin‐16 and ‐19, critical for Ca++ reabsorption in the TAL. The transcript and protein levels of claudin‐14 are upregulated by high Ca++ diet, while downregulated by low Ca++ diet. Claudin‐14 knockout animals develop hypermagnesaemia, hypomagnesiuria, and hypocalciuria under high Ca++ dietary condition. MiR‐9 and miR‐374 transcript levels are regulated by extracellular Ca++ in a reciprocal manner as claudin‐14. The Ca++ sensing receptor (CaSR) acts upstream of the microRNA‐claudin‐14 axis. Together, these data have established a key regulatory role for claudin‐14 in renal Ca++ homeostasis.


Annual Review of Physiology | 2013

Claudins and the kidney.

Jianghui Hou; Madhumitha Rajagopal; Alan S. L. Yu

Claudins are tight junction membrane proteins that regulate paracellular permeability of renal epithelia to small ions, solutes, and water. Claudins interact within the cell membrane and between neighboring cells to form tight junction strands and constitute both the paracellular barrier and the pore. The first extracellular domain of claudins is thought to be the pore-lining domain and contains the determinants of charge selectivity. Multiple claudins are expressed in different nephron segments; such differential expression likely determines the permeability properties of each segment. Recent evidence has identified claudin-2 as constituting the cation-reabsorptive pathway in the proximal tubule; claudin-14, -16, and -19 as forming a complex that regulates calcium transport in the thick ascending limb of the loop of Henle; and claudin-4, -7, and -8 as determinants of collecting duct chloride permeability. Mutations in claudin-16 and -19 cause familial hypercalciuric hypomagnesemia with nephrocalcinosis. The roles of other claudins in kidney diseases remain to be fully elucidated.


Journal of The American Society of Nephrology | 2008

CLDN16 Genotype Predicts Renal Decline in Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis

Martin Konrad; Jianghui Hou; Stefanie Weber; Jörg Dötsch; Jameela A. Kari; Tomáš Seeman; Eberhard Kuwertz-Bröking; Amira Peco-Antic; Velibor Tasic; Katalin Dittrich; Hammad O. Alshaya; Rodo O. von Vigier; Sabina Gallati; Daniel A. Goodenough; André Schaller

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a rare autosomal recessive tubular disorder caused by CLDN16 mutations. CLDN16 encodes the renal tight junction protein claudin-16, which is important for the paracellular reabsorption of calcium and magnesium in the thick ascending limb of Henle’s loop. That FHHNC is frequently associated with progressive renal failure suggests additional roles for claudin-16 in the maintenance of tight junction integrity. An investigation of 32 patients with FHHNC and 17 different mutations was previously reported; here, the analysis is expanded to 39 additional patients and 12 new mutations. Expression studies revealed that five of the12 new mutations led to partial loss of claudin-16 function and the remaining seven led to complete loss of function. The 23 patients who had mutations resulting in complete loss of function of both alleles were significantly younger at the onset of symptoms than the 46 patients who had at least one mutant allele providing partial function (2.2 versus 5.6 years; P _ 0.01). In addition, those with complete loss of function had a more rapid decline in GFR (7.3 versus 2.9 ml/min per 1.72 m2/y; P _ 0.01), leading to 54% requiring renal replacement therapy by age 15 compared with 20% of those with residual function (P _0.05). These data suggest that residual function of claudin-16 may delay the progression of renal failure in FHHN


Current Opinion in Nephrology and Hypertension | 2010

Claudin-16 and claudin-19 function in the thick ascending limb

Jianghui Hou; Daniel A. Goodenough

Purpose of reviewClaudin-16 and claudin-19 play a major role in the regulation of magnesium reabsorption in the thick ascending limb (TAL). This review describes recent findings of the physiological function of claudin-16 and claudin-19 underlying normal transport function for magnesium reabsorption in the TAL. Recent findingsMutations in the genes encoding the tight junction proteins claudin-16 and claudin-19 cause the inherited human renal disorder familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The cation selectivity of the tight junction is vital for generating the lumen positive transepithelial potential in the TAL, which drives paracellular absorption of magnesium. Claudin-16 and claudin-19 require each other for assembly into tight junctions in the TAL. Heteromeric claudin-16 and claudin-19 interaction forms a cation selective tight junction paracellular channel. Loss of either claudin-16 or claudin-19 in the mouse kidney abolishes the cation selectivity for the TAL paracellular pathway, leading to excessive renal wasting of magnesium. SummaryEpithelial paracellular channels are increasingly understood to be formed from claudin oligomeric complexes. In the mouse TAL, claudin-16 and claudin-19 cooperate to form cation-selective paracellular channels required for normal levels of magnesium reabsorption. Different subsets of the claudin family of tight junction proteins are found distributed throughout the nephron, and understanding their roles in paracellular ion transport will be fundamental to understanding renal ion homeostasis.

Collaboration


Dive into the Jianghui Hou's collaboration.

Top Co-Authors

Avatar

Yongfeng Gong

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lushan Zhou

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Abby Sunq

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Yang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge