Jiangtao Xi
University of Wollongong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiangtao Xi.
IEEE Transactions on Instrumentation and Measurement | 1996
Jiangtao Xi; Joe F. Chicharo
Digital periodic signal analysis often requires synchronized sampling with the signal being analyzed. In certain practical situations, however, this condition is difficult to satisfy. As a result, a number of undesirable effect such as the spectral leakage associated with the discrete Fourier transform (DFT), and the truncation errors in digital wattmeters arise and degrade system performance. This paper presents a new approach which attempts to remedy the underlying problem. The basic idea of the proposed method is to modify the actual sampled sequence such that it becomes an ideal sample sequence which is synchronized with the signal subjected to sampling. A simple algorithm for modifying the sampled sequence on-line is derived based on interpolation. The proposed approach requires quite modest additional computational burden which makes it suitable for real-time signal professing. To illustrate the practical applicability of the proposed algorithm, the paper considers two distinct but common cases. First, it shows how the proposed method can be used in the case of DFT analysis of harmonic signals, and secondly, it considers the digital wattmeter application area in electrical power-system measurement. Results show that the proposed algorithm is capable of reducing both the leakage effect in DFT analysis and truncation errors in digital wattmeters.
Applied Optics | 2011
Yuanlong Fan; Yanguang Yu; Jiangtao Xi; Joe F. Chicharo
Approaches that are, to our knowledge, novel, are proposed in this paper to improve the accuracy performance of self-mixing interferometry (SMI) for displacement measurement. First, the characteristics associated with signals observed in SMI systems are studied, based on which a new procedure is proposed for achieving accurate estimation of the laser phase. The studies also revealed the reasons for the inherent errors associated with the existing SMI-based techniques for displacement measurement. Then, this paper presents a new method for estimating the optical feedback level factor (denoted by C) in real time. Combining the new algorithms for estimating the laser phase and updating C value, the paper finally presents a novel technique for displacement measurement with improved accuracy performance in contrast to existing techniques. The proposed technique is verified by both simulation and experimental data.
Optics Express | 2005
Enbang Li; X. Peng; Jiangtao Xi; Joe F. Chicharo; Jianquan Yao; D.W. Zhang
In this paper, we report on a laser fringe projection set-up, which can generate fringe patterns with multiple frequencies and phase shifts. Stationary fringe patterns with sinusoidal intensity distributions are produced by the interference of two laser beams, which are frequency modulated by a pair of acousto-optic modulators (AOMs). The AOMs are driven by two RF signals with the same frequency but a phase delay between them. By changing the RF frequency and the phase delay, the fringe spatial frequency and phase shift can be electronically controlled, which allows high-speed switching from one frequency or phase to another thus makes a dynamic 3D profiling possible.
Applied Optics | 2006
Yingsong Hu; Jiangtao Xi; Enbang Li; Joe F. Chicharo; Zongkai Yang
This paper presents a new approach to fringe pattern profilometry. In this paper, a generalized model describing the relationship between the projected fringe pattern and the deformed fringe pattern is derived, in which the projected fringe pattern can be arbitrary rather than being limited to being sinusoidal, as are those for the conventional approaches. Based on this model, what is believed to be a new approach is proposed to reconstruct the three-dimensional object surface by estimating the shift between the projected and deformed fringe patterns. Additionally, theoretical analysis, computer simulation, and experimental results are presented, which show how the proposed approach can significantly improve the measurement accuracy, especially when the fringe patterns are distorted by unknown factors.
IEEE Journal of Quantum Electronics | 2005
Jiangtao Xi; Yanguang Yu; Joe F. Chicharo; Thierry Bosch
The paper presents a practical approach for measuring the linewidth enhancement factor /spl alpha/ of semiconductor lasers and the optical feedback level factor C in a semiconductor laser with an external cavity. The proposed approach is based on the analysis of the signals observed in an optical feedback self-mixing interferometric system. The parameters /spl alpha/ and C are estimated using a gradient-based optimization algorithm that achieves best data-to-theoretical model match. The effectiveness and accuracy of the method has been confirmed and tested by computer simulations and experiments, which show that the proposed approach is able to estimate /spl alpha/ and C with an accuracy of 6.7% and 4.63%, respectively.
Optics Letters | 2011
Yi Ding; Jiangtao Xi; Yanguang Yu; Joe F. Chicharo
Phase unwrapping is an important and challenging issue in fringe pattern profilometry. In this Letter we propose an approach to recover absolute phase maps of two fringe patterns with selected frequencies. Compared to existing temporal multiple frequency algorithms, the two frequencies in our proposed algorithm can be high enough and thus enable efficient and accurate recovery of absolute phase maps. Experiment results are presented to confirm the effectiveness of the proposed technique.
IEEE Journal of Quantum Electronics | 2007
Yanguang Yu; Jiangtao Xi; Joe F. Chicharo; Thierry Bosch
This paper proposes an approach for automatically measuring the linewidth-enhancement factor (LEF) of semiconductor lasers using optical feedback self-mixing interferometry (OFSMI), which works in weak optical feedback regime and where the external target is subject to simple harmonic vibration with unknown vibration frequency and magnitude. According to well-known Lang-Kobayashi theory the waveform of the modulated optical output power from the OFSMI system is influenced by multiple parameters, including the LEF, the optical feedback level factor, and the parameters related to the movement of external target. In order to estimate LEF, other parameters must also be considered and, hence, a multiple parameter estimation strategy is required. We propose a solution for this multiple parameter estimation problem based on the principle of data-to-theoretical model match. In particular, a strategy for minimizing a cost function in order to achieve the best fitting is proposed with which all the unknown parameters can be estimated. The performance of the proposed approach is tested using experimental data in comparison with other two approaches. It is seen that, over different experimental signals, the standard deviation for estimated LEF is less than 4.58% on average, which shows that results have excellent consistency. Moreover, the proposed approach also provides a solution for vibration measurement (that is, vibration frequency and magnitude).
IEEE Journal of Quantum Electronics | 2009
Yanguang Yu; Jiangtao Xi; Joe F. Chicharo; Thierry Bosch
This paper studies the behavior of optical feedback self-mixing interferometric (OFSMI) systems, where the semiconductor lasers operate at a single mode (perturbed external cavity mode) with a large optical feedback factor C. Based on analysis of the spectral linewidth associated with all the possible lasing modes at different C values, a set of mode jumping rules are proposed following the minimum linewidth mode competition principle proposed in . According to the rules, the C factor can be classified into different regions, on which an OFSMI system will exhibit distinct phenomena. In particular, for the same amount of displacement associated with the external cavity, the fringe number reduction on the OFSMI signal should be observed when C increases from one region to the next. An experimental setup with a laser diode HL7851G was implemented and employed to verify the proposed rules. The behavior of the OFSMI predicted by the paper has been confirmed by the experiments with C value up to 8.0.
Optics Express | 2012
Yi Ding; Jiangtao Xi; Yanguang Yu; Wengqing Cheng; Shu Wang; Joe F. Chicharo
In a recent published work we proposed a technique to recover the absolute phase maps of two fringe patterns with different spatial frequencies. It is demonstrated that a number of selected frequency pairs can be used for the proposed approach, but the published work did not provide a guideline for frequency selection. In addition, the performance of the proposed technique in terms of its anti-noise capability is not addressed. In this paper, the rules for selecting the two frequencies are presented based on theoretical analysis of the proposed technique. Also, when the two frequencies are given, the anti-noise capability of technique is formulated and evaluated. These theoretical conclusions are verified by experimental results.
Optics Express | 2011
Yanguang Yu; Jiangtao Xi; Joe F. Chicharo
Feedback parameter (the C factor) is an important parameter for a semiconductor laser operating in the regime of external optical feedback. Self-mixing interferometry (SMI) has been proposed for the measurement of the parameter, based on the time-domain analysis of the output power waveforms (called SMI signals) in presence of feedback. However, the existing approaches only work for a limited range of C, below about 3.5. This paper presents a new method to measure C based on analysis of the phase signal of SMI signals in the frequency domain. The proposed method covers a large range of C values, up to about 10. Simulations and experimental results are presented for verification of the proposed method.