Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiangui Liu is active.

Publication


Featured researches published by Jiangui Liu.


Canadian Journal of Remote Sensing | 2011

The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index

Xianfeng Jiao; Heather McNairn; Jiali Shang; Elizabeth Pattey; Jiangui Liu; Catherine Champagne

In this study, quadrature-polarization (quad-pol) RADARSAT-2 data at steep (25o) and shallow (40o) incidence angles were acquired during the 2008 season, imaging 13 corn and soybean fields. The leaf area index (LAI) was derived from optical imagery, and volumetric soil moisture was measured coincident with each overpass. Many synthetic aperture radar (SAR) parameters were significantly correlated with derived corn and soybean LAI. The highest correlations were observed for parameters sensitive to volume scattering (HV, LL, and RR backscatter, pedestal height, and the Freeman–Durden volume-scattering parameter) at the steeper angle. For corn, the minimum correlation coefficient was 0.95. For soybeans, the coefficients were between 0.83 and 0.86. Sensitivity to LAI was lost late in the season, when the derived LAI exceeded 3.0 m2m−2. The derived LAI and the measured soil moisture were used to model several radar parameters (HV backscatter, pedestal height, and the Freeman–Durden volume-scattering parameter) using the water-cloud model. Early in the season, the SAR response was primarily affected by the vegetation, but soil moisture was also an important contributor. When the derived LAI exceeded 1, soil-moisture contributions became minimal. The water-cloud model adequately simulated SAR responses as the canopy developed and LAI increased, demonstrating the potential of polarimetric SAR data for monitoring indicators of crop productivity.


Journal of Applied Remote Sensing | 2014

Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images

Jiali Shang; Jiangui Liu; Ted Huffman; Budong Qian; Elizabeth Pattey; Jinfei Wang; Ting Zhao; Xiaoyuan Geng; David Kroetsch; Taifeng Dong; Nicholas Lantz

Abstract This study investigates the use of two different optical sensors, the multispectral imager (MSI) onboard the RapidEye satellites and the operational land imager (OLI) onboard the Landsat-8 for mapping within-field variability of crop growth conditions and tracking the seasonal growth dynamics. The study was carried out in southern Ontario, Canada, during the 2013 growing season for three annual crops, corn, soybeans, and winter wheat. Plant area index (PAI) was measured at different growth stages using digital hemispherical photography at two corn fields, two winter wheat fields, and two soybean fields. Comparison between several conventional vegetation indices derived from concurrently acquired image data by the two sensors showed a good agreement. The two-band enhanced vegetation index (EVI2) and the normalized difference vegetation index (NDVI) were derived from the surface reflectance of the two sensors. The study showed that EVI2 was more resistant to saturation at high biomass range than NDVI. A linear relationship could be used for crop green effective PAI estimation from EVI2, with a coefficient of determination ( R 2 ) of 0.85 and root-mean-square error of 0.53. The estimated multitemporal product of green PAI was found to be able to capture the seasonal dynamics of the three crops.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2015

Evaluation of Chlorophyll-Related Vegetation Indices Using Simulated Sentinel-2 Data for Estimation of Crop Fraction of Absorbed Photosynthetically Active Radiation

Taifeng Dong; Jihua Meng; Jiali Shang; Jiangui Liu; Bingfang Wu

In recent years, the impact of chlorophyll content on the estimation of the fraction of absorbed photosynthetically active radiation (FPAR) has attracted increased attention. In this study, chlorophyll-related vegetation indices (VIs) were selected and tested for their capability in crop FPAR estimation using simulated Sentinel-2 data. These indices can be categorized into four classes: 1) the ratio indices; 2) the normalized difference indices; 3) the triangular area-based indices; and 4) the integrated indices. Two crops, wheat and corn, with distinctive canopy and leaf structure were studied. Measured FPAR and Sentinel-2 reflectance simulated from field spectral measurements were used. The results showed that VIs using the nearinfrared and red-edge reflectance, including the modified Simple Ratio-2 (mSR2), the red-edge Simple Ratio (SR705), the RedEdge Normalized Difference Vegetation Index (ND705), MERIS Terrestrial Chlorophyll Index (MTCI), and the Revised Optimized Soil-Adjusted Vegetation Index (OSAVI[705, 750]), had a strong linear correlation with FPAR, especially in the high biomass range. When the red-edge reflectance was used, the ratio indices (e.g., mSR2 and SR705) had a stronger correlation with crop FPAR than the normalized difference indices (e.g., ND705). Sensitivity analysis showed that mSR2 had the strongest linear correlation with FPAR of the two crops across a growing season. Further analysis indicated that indices using the red-edge reflectance might be useful for developing FPAR retrieval algorithms that are independent of crop types. This suggests the potential for high resolution and high-quality mapping of FPAR for precision farming using the Sentinel-2 data.


Canadian Journal of Soil Science | 2015

Upscaling modelled crop yields to regional scale: A case study using DSSAT for spring wheat on the Canadian prairies

Ted Huffman; Budong Qian; Reinder De Jong; Jiangui Liu; H. Wang; B. G. McConkey; Tony Brierley; Jingyi Yang

Huffman, T., Qian, B., De Jong, R., Liu, J., Wang, H., McConkey, B., Brierley, T. and Yang, J. 2015. Upscaling modelled crop yields to regional scale: A case study using DSSAT for spring wheat on the Canadian prairies. Can. J. Soil Sci. 95: 49–61. Dynamic crop models are often operated at the plot or field scale. Upscaling is necessary when the process-based crop models are used for regional applications, such as forecasting regional crop yields and assessing climate change impacts on regional crop productivity. Dynamic crop models often require detailed input data for climate, soil and crop management; thus, their reliability may decrease at the regional scale as the uncertainty of simulation results might increase due to uncertainties in the input data. In this study, we modelled spring wheat yields at the level of numerous individual soils using the CERES-Wheat model in the Decision Support System for Agrotechnology Transfer (DSSAT) and then aggregated the simulated yields from individual soils to regions where crop yields were reported. A comparison between the aggregated and the reported yields was performed to examine the potential of using dynamic crop models with individual soils in a region for the simulation of regional crop yields. The regionally aggregated simulated yields demonstrated reasonable agreement with the reported data, with a correlation coefficient of 0.71 and a root-mean-square error of 266 kg ha-1 (i.e., 15% of the average yield) over 40 regions on the Canadian prairies. Our conclusion is that aggregating simulated crop yields on individual soils with a crop model can be reliable for the estimation of regional crop yields. This demonstrated its potential as a useful approach for using crop models to assess climate change impacts on regional crop productivity.


Giscience & Remote Sensing | 2017

Crop classification and acreage estimation in North Korea using phenology features

Huanxue Zhang; Qiangzi Li; Jiangui Liu; Jiali Shang; Xin Du; Longcai Zhao; Na Wang; Taifeng Dong

In North Korea, reliable and timely information on crop acreage and spatial distribution is hard to obtain. In this study, we developed a fast and robust method to estimate crop acreage in North Korea using time-series normalized difference vegetation index (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. We proposed a method to identify crop type based on NDVI phenology features using data collected in other areas with similar agri-environmental conditions to mitigate the shortage of ground truth data. Eventually the classification map (MODIScrop) was assessed using the Food and Agriculture Organization (FAO) statistical data and high-resolution crop classification maps derived from one Landsat scene (LScrop). The Pareto boundary method was used to assess the accuracy and crop distribution of the MODIScrop maps. Results showed that acreage derived from the MODIScrop maps was generally consistent with that reported in the FAO data (a relative error <4.1% for rice and <6.1% for maize, and <9.0% for soybean except for in 2004, 2008, and 2009) and the maps derived from the LScrop (a relative error about 5% in 2013, and 7% in 2008 and 2014). The classification accuracy reached 74.4%, 69.8%, and 73.1% of the areas covered by the Landsat images in 2008, 2013, and 2014, respectively. This indicates that features derived from NDVI profiles were able to characterize major crops, and the approaches developed in this study are feasible for crop mapping and acreage estimation in regions with limited ground truth data.


Journal of remote sensing | 2015

Modified vegetation indices for estimating crop fraction of absorbed photosynthetically active radiation

Taifeng Dong; Jihua Meng; Jiali Shang; Jiangui Liu; Bingfang Wu; Ted Huffman

The fraction of absorbed photosynthetically active radiation (FPAR) is an important biophysical parameter of vegetation. It is often estimated using vegetation indices (VIs) derived from remote-sensing data, such as the normalized difference VI (NDVI). Ideally a linear relationship is used for the estimation; however, most conventional VIs are affected by canopy background reflectance and their sensitivity to FPAR declines at high biomass. In this study, a multiplier, the ratio of the green to the red reflectance, was introduced to improve the linear relationship between VIs and crop FPAR. Three widely used VIs – NDVI, the green normalized difference VI (GNDVI), and the renormalized difference VI (RDVI) – were modified this way and were called modified NDVI (MNDVI), modified GNDVI (MGNDVI), and modified RDVI (MRDVI), respectively. A sensitivity study was applied to analyse the correlation between the three modified indices and the leaf area index (LAI) using the reflectance data simulated by the combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance model (PROSAIL model). The results revealed that these new indices reduced the saturation trend at high LAI and achieved better linearity with crop LAI at low-to-medium biomass when compared with their corresponding original versions. This has also been validated using in situ FPAR measurements over wheat and maize crops. In particular, estimation using MNDVI achieved a coefficient of determination (R2) of 0.97 for wheat and 0.86 for maize compared to 0.90 and 0.82 for NDVI, respectively, while MGNDVI achieved 0.97 for wheat and 0.88 for maize, compared to 0.90 and 0.81 for GNDVI, respectively. Algorithms based on the VIs when applied to both wheat and maize showed that MNDVI and MGNDVI achieved a better linearity relationship with FPAR (R2 = 0.92), in comparison with NDVI (R2 = 0.85) and GNDVI (R2 = 0.82). The study demonstrated that applying the green to red reflectance ratio can improve the accuracy of FPAR estimation.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2017

Deriving Maximum Light Use Efficiency From Crop Growth Model and Satellite Data to Improve Crop Biomass Estimation

Taifeng Dong; Jiangui Liu; Budong Qian; Qi Jing; Holly Croft; Jing M. Chen; Jinfei Wang; Ted Huffman; Jiali Shang; Pengfei Chen

Maximum light use efficiency (LUEmax) is an important parameter in biomass estimation models (e.g., the Production Efficiency Models (PEM)) based on remote sensing data; however, it is usually treated as a constant for a specific plant species, leading to large errors in vegetation productivity estimation. This study evaluates the feasibility of deriving spatially variable crop LUEmax from satellite remote sensing data. LUEmax at the plot level was retrieved first by assimilating field measured green leaf area index and biomass into a crop model (the Simple Algorithm for Yield estimate model), and was then correlated with a few Landsat-8 vegetation indices (VIs) to develop regression models. LUEmax was then mapped using the best regression model from a VI. The influence factors on LUEmax variability were also assessed. Contrary to a fixed LUEmax, our results suggest that LUEmax is affected by environmental stresses, such as leaf nitrogen deficiency. The strong correlation between the plot-level LUEmax and VIs, particularly the two-band enhanced vegetation index for winter wheat (Triticum aestivum) and the green chlorophyll index for maize (Zea mays) at the milk stage, provided a potential to derive LUEmax from remote sensing observations. To evaluate the quality of LUEmax derived from remote sensing data, biomass of winter wheat and maize was compared with that estimated using a PEM model with a constant LUEmax and the derived variable LUEmax. Significant improvements in biomass estimation accuracy were achieved (by about 15.0% for the normalized root-mean-square error) using the derived variable LUEmax . This study offers a new way to derive LUEmax for a specific PEM and to improve the accuracy of biomass estimation using remote sensing.


Remote Sensing | 2016

Assessing the Impact of Climate Variability on Cropland Productivity in the Canadian Prairies Using Time Series MODIS FAPAR

Taifeng Dong; Jiangui Liu; Jiali Shang; Budong Qian; Ted Huffman; Yinsuo Zhang; Catherine Champagne; Bahram Daneshfar

Cropland productivity is impacted by climate. Knowledge on spatial-temporal patterns of the impacts at the regional scale is extremely important for improving crop management under limiting climatic factors. The aim of this study was to investigate the effects of climate variability on cropland productivity in the Canadian Prairies between 2000 and 2013 based on time series of MODIS (Moderate Resolution Imaging Spectroradiometer) FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) product. Key phenological metrics, including the start (SOS) and end of growing season (EOS), and the cumulative FAPAR (CFAPAR) during the growing season (between SOS and EOS), were extracted and calculated from the FAPAR time series with the Parametric Double Hyperbolic Tangent (PDHT) method. The Mann-Kendall test was employed to assess the trends of cropland productivity and climatic variables, and partial correlation analysis was conducted to explore the potential links between climate variability and cropland productivity. An assessment using crop yield statistical data showed that CFAPAR can be taken as a surrogate of cropland productivity in the Canadian Prairies. Cropland productivity showed an increasing trend in most areas of Canadian Prairies, in general, during the period from 2000 to 2013. Interannual variability in cropland productivity on the Canadian Prairies was influenced positively by rainfall variation and negatively by mean air temperature.


Canadian Journal of Remote Sensing | 2016

Identifying Major Crop Types in Eastern Canada Using a Fuzzy Decision Tree Classifier and Phenological Indicators Derived from Time Series MODIS Data

Jiangui Liu; Ted Huffman; Jiali Shang; Budong Qian; Taifeng Dong; Yinsuo Zhang

Abstract. This article presents a methodology that uses a fuzzy decision tree classifier and phenological indicators derived from remote sensing data for identifying major crop types in southwestern Ontario in eastern Canada. Phenological indicators were derived from time series Normalized Difference Vegetation Index (NDVI) calculated from 250-m surface reflectance data of the Moderate Resolution Imaging Spectroradiometer (MODIS). Training and testing samples were derived from crop classification maps at 30-m resolution for 2011, 2012, and 2013. Training samples for 2013 were used for discrimination rule development, and the classifier was then applied to all 3 years. Results showed that the classifier was able to discriminate major crop types such as winter wheat, corn, soybean, and forage crops with an overall accuracy of 75.3 % for 2013 and comparable accuracy for 2011 and 2012. Confusion exists mainly between corn and soybean, and between winter wheat and forage crops. This indicates that phenological indicators derived from optical remote sensing data are intrinsic to a crop and might be more indicative than the commonly used remote sensing features that are susceptible to environmental and management impacts. This methodology provides an opportunity for discriminating general crop types without requiring a year-specific training sample set.


Science of The Total Environment | 2018

Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation

Chao Zhang; Jiangui Liu; Jiali Shang; Huanjie Cai

Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm-2), leaf water content (LWC: %) and canopy water content (CWC: kg m-2), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R2=0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums.

Collaboration


Dive into the Jiangui Liu's collaboration.

Top Co-Authors

Avatar

Jiali Shang

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Ted Huffman

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Taifeng Dong

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Pattey

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Budong Qian

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Jinfei Wang

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Heather McNairn

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Xianfeng Jiao

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Catherine Champagne

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Melodie Green

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge