Jiangwei Yang
Gansu Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jiangwei Yang.
PLOS ONE | 2014
Ning Zhang; Jiangwei Yang; Zemin Wang; Yikai Wen; Jie Wang; Wenhui He; Bailin Liu; Huaijun Si; Di Wang
MicroRNAs (miRNAs) are a group of small, non-coding RNAs that play important roles in plant growth, development and stress response. There have been an increasing number of investigations aimed at discovering miRNAs and analyzing their functions in model plants (such as Arabidopsis thaliana and rice). In this research, we constructed small RNA libraries from both polyethylene glycol (PEG 6,000) treated and control potato samples, and a large number of known and novel miRNAs were identified. Differential expression analysis showed that 100 of the known miRNAs were down-regulated and 99 were up-regulated as a result of PEG stress, while 119 of the novel miRNAs were up-regulated and 151 were down-regulated. Based on target prediction, annotation and expression analysis of the miRNAs and their putative target genes, 4 miRNAs were identified as regulating drought-related genes (miR811, miR814, miR835, miR4398). Their target genes were MYB transcription factor (CV431094), hydroxyproline-rich glycoprotein (TC225721), quaporin (TC223412) and WRKY transcription factor (TC199112), respectively. Relative expression trends of those miRNAs were the same as that predicted by Solexa sequencing and they showed a negative correlation with the expression of the target genes. The results provide molecular evidence for the possible involvement of miRNAs in the process of drought response and/or tolerance in the potato plant.
Computational Biology and Chemistry | 2014
Jiangwei Yang; Ning Zhang; Xiaoxiao Mi; Liangliang Wu; Rui Ma; Xi Zhu; Lei Yao; Xin Jin; Huaijun Si; Di Wang
The MYB proteins comprise one of the largest families of plant transcription factors (TFs) and many of MYB families, which play essential roles in plant growth, development and respond to environmental stresses, and have yet been identified in plant. Previous research has shown that miR159 family members repressed the conserved plant R2R3 MYB domain TFs in model plants. In the present research, we identified three potato novel miR159 family members named as stu-miR159a, stu-miR159b and stu-miR159c based on bioinformatics analysis. Target prediction showed that they have a bite sit on the three GAMyb-like genes (StGAMyb-like1, StGAMyb-like2.1 and StGAMyb-like2.2) of potato. Those GAMyb-like genes also have been selected and cloned from potato, which belong to R2R3 MYB domain TFs. We further measured expressional levels of stu-miR159s and potato GAMyb-like genes during the different periods of drought treated samples using quantitative real-time PCR (qRT-PCR). The results showed that they had a opposite expression pattern, briefly, three stu-miR159 members showed similar expressional trends which were significantly decreased expression after experiencing 25 days of drought stress treatment, while the potato GAMyb-like family members were greatly increased. Therefore, we suggested that stu-miR159s negatively regulated the expression of potato GAMyb-like genes which responsible for drought stress. The findings can facilitate functional studies of miRNAs in plants and provide molecular evidence for involvement process of drought tolerance in potato.
Computational Biology and Chemistry | 2013
Jiangwei Yang; Ning Zhang; Congyu Ma; Yun Qu; Huaijun Si; Di Wang
Proline is an important osmotic adjusting material greatly accumulated under drought stress and can help plant to adapt to osmotic stress. MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in plant development and stress response by negatively affecting gene expression at post-transcriptional level. Three genes of pyrroline-5-carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR) and proline dehydrogenase (ProDH) are regulating proline metabolism. Until now, little is known about miRNAs regulating proline accumulation. In this work, in order to understand whether miRNAs related to mRNAs of enzymes to regulate proline enrichment under drought stress, we used mRNAs of related enzymes as the targets of miRNAs to search miRBase using BLAST and find many query miRNA sequences. After a range of filtering criteria, 11 known miRNAs classified into 6 miRNA families were predicted. The result from qRT-PCR assay showed that 10 out of 11 predicted miRNAs were successfully detected including 9 down-regulated miRNAs and one up-regulated miRNA. Based on expression and functional analysis, we identified miR172, miR396a, miR396c and miR4233 may regulate P5CS gene, and miR2673 and miR6461 may regulate P5CR and ProDH gene, respectively. The findings can help us make a good understanding of the roles of miRNAs in regulation of proline accumulation and provide molecular evidence for involvement process of drought tolerance in potato.
Journal of Biotechnology | 2015
Bailin Liu; Ning Zhang; Yikai Wen; Xin Jin; Jiangwei Yang; Huaijun Si; Di Wang
Potato tuber dormancy release is a critical development process that allows potato to produce new plant. The first Illumina RNA sequencing to generate the expressed mRNAs at dormancy tuber (DT), dormancy release tuber (DRT) and sprouting tuber (ST) was performed. We identified 26,639 genes including 5,912 (3,450 up-regulated while 2,462 down-regulated) and 3,885 (2,141 up-regulated while 1,744 down-regulated) genes were differentially expressed from DT vs DRT and DRT vs ST. The RNA-Seq results were further verified using qRT-PCR. We found reserve mobilization events were activated before the bud emergence (DT vs DRT) and highlighted after dormancy release (DRT vs ST). Overexpressed genes related to metabolism of auxin, gibberellic acid, cytokinin and barssinosteriod were dominated in DT vs DRT, whereas overexpressed genes involved in metabolism of ethylene, jasmonate and salicylate were prominent in DRT vs ST. Various histone and cyclin isoforms associated genes involved in cell division/cycle were mainly up-regulated in DT vs DRT. Dormancy release process was also companied by stress response and redox regulation, those genes related to biotic stress, cell wall and second metabolism was preferentially overexpressed in DRT vs ST, which might accelerate dormancy breaking and sprout outgrowth. The metabolic processes activated during tuber dormancy release were also supported by plant seed models. These results represented the first comprehensive picture of a large number of genes involved in tuber dormancy release process.
Comptes Rendus Biologies | 2015
Xiaoxiao Mi; Xiangzhuo Ji; Jiangwei Yang; Lina Liang; Huaijun Si; Jiahe Wu; Ning Zhang; Di Wang
The Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a fatal pest, which is a quarantine pest in China. The CPB has now invaded the Xinjiang Uygur Autonomous Region and is constantly spreading eastward in China. In this study, we developed transgenic potato plants expressing cry3A gene. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the cry3A gene expressed in leaves, stems and roots of the transgenic plants under the control of CaMV 35S promoter, while they expressed only in leaves and stems under the control of potato leaf and stem-specific promoter ST-LS1. The mortality of the larvae was higher (28% and 36%) on the transgenic plant line 35S1 on the 3rd and 4th days, and on ST3 (48%) on the 5th day after inoculation with instar larvae. Insect biomass accumulation on the foliage of the transgenic plant lines 35S1, 35S2 and ST3 was significantly lower (0.42%, 0.43% and 0.42%). Foliage consumption was lowest on transgenic lines 35S8 and ST2 among all plant foliage (7.47 mg/larvae/day and 12.46 mg/larvae/day). The different transgenic plant foliages had varied inhibition to larval growth. The survivors on the transgenic lines obviously were smaller than their original size and extremely weak. The transgenic potato plants with CPB resistance could be used to develop germplasms or varieties for controlling CPB damage and halting its spread in China.
Comptes Rendus Biologies | 2017
Xiaoxiao Mi; Xue Liu; Haolu Yan; Lina Liang; Xiangyan Zhou; Jiangwei Yang; Huaijun Si; Ning Zhang
Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future.
Plant Systematics and Evolution | 2016
Jiangwei Yang; Ning Zhang; Xiangyan Zhou; Huaijun Si; Di Wang
Plant microRNAs are important endogenous gene regulators which regulate gene expression at post-transcriptional level. Previous studies have identified that miR169 family members regulated the NF-YA transcription factors which have been implicated in plant development and stress responses. At present, reported potato genome sequence data offered an opportunity for global insights into the molecular mechanisms of the miR169/NF-YA modules in potato. In this work, 4 novel stu-miR169 family members were predicted in potato based on potato genome sequence data. miRNA target prediction showed that mature stu-miR169 sequences have a bite sit on the 5 of StNF-YA genes in potato, and three of them were validated by RNA ligase-mediated 5′RACE (5′ RLM-RACE) assay. The result from investigation of the expression patterns of mature stu-miR169 and their predicted target genes also showed that mature stu-miR169 was down-regulated in response to the drought stress. There were some targeted StNF-YA genes that exhibited a negative expression pattern with mature stu-miR169 during the different periods of drought-treated samples. Taken together, the decreased expression of stu-miR169 might drive over-expression of NF-YA family members, they are related to resistances against drought stress.
Plant Physiology and Biochemistry | 2018
Xiangyan Zhou; Ning Zhang; Jiangwei Yang; Xun Tang; Yikai Wen; Huaijun Si
The DWARF4 (DWF4) gene encodes a C-22 hydroxylase which is pivotal for brassinosteroids (BRs) biosynthesis. In this research, aimed to understand the molecular mechanism of DWF4 on regulation of potatoes tolerance to salt stress, DWF4 was cloned from potato, named as StDWF4. Its 1476 bp open reading frame encodes a protein of 491 amino acids. The StDWF4-overexpressing (OE) and interference-expressing (RNAi) transgenic potato plants were acquired using Agrobacterium-mediated transformation, respectively. Tissue specific analysis using Quantitative real-time polymerase chain reaction (qRT-PCR) demonstrated that the StDWF4 gene expressed in the leaves, stems and roots of the transgenic and un-transgenic (NT) plants, with specially increased (StDWF4-OE)/reduced (StDWF4-RNAi) expression in the roots. The content of malondialdehyde (MDA) in StDWF4-OE potato plants was lower than that of NT, and proline content was higher than that of NT. MDA and proline content in StDWF4-OE and NT under salt-stress was significantly higher than that of the control and was increased at different sampling times. The content of soluble protein, soluble sugar and the activities of superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) was higher in the StDWF4-OE plantlets at varied salt treatment time than in the NT potatoes. Reduction of H2O2 content in the StDWF4-OE plants was observed. All above plant physiology indicators in the StDWF4-RNAi potatoes showed opposite variation trends. The results proved that the overexpressing of StDWF4 in potato plantlets can enhance the salt resistance by alleviating the negative effects of salt-stress. However, its interference expression in potato plants depresses the salt resistance. The results lay the groundwork for intensive study of BRs regulation in potato growth and development, and will help us to reveal the molecular mechanisms of how the BRs signaling regulate potato salt tolerance.
Archive | 2018
Huaijun Si; Ning Zhang; Xun Tang; Jiangwei Yang; Yikai Wen; Li Wang; Xiangyan Zhou
Abstract Traditional breeding has been widely used and will remain crucially important for agricultural production. However, traditional breeding technology only improves crops to a certain level because it relies on the endogenous or population gene pools. Transgenic technology can overcome species or outcrossing barriers, and enlarge the gene pools in crops. Genetically modified (GM) crops can act as a powerful complement to the crops produced by conventional breeding methods to meet the worldwide demand for quality foods. This chapter is an attempt to summarize the recent progress and new advances in improvement of tuber and root crops (including potato, sweet potato, taro, ginger, and turmeric) using GM technology. The biosafety issues involved in transgenic tuber and root crops and future prospects using GM technology are also discussed.
Frontiers in Plant Science | 2018
Li Zhang; Lei Yao; Ning Zhang; Jiangwei Yang; Xi Zhu; Xun Tang; Alejandro Calderón-Urrea; Huaijun Si
The NAC designation is derived from petunia (Petunia hybrida) gene NO APICAL MERISTEM (NAM) and Arabidopsis genes ATAF1/ATAF2 and CUP-SHAPED COTYLEDON2 (CUC2), which belongs to the family of plant-specific transcription factors (TFs), and plays important role in plant development processes, such as response to biotic and abiotic stress, and hormone signaling. MicroRNAs (miRNAs) are a class of small, non-coding endogenous RNAs which play versatile and significant role in plant stress response and development via negatively affecting gene expression at a post-transcriptional level. Here, we showed that Stu-mi164 had a complementary sequence in the CDS sequence of potato NAC TFs, and that NAC expression exhibited significant differences under osmotic stress. We measured expression levels of the Stu-mi164 target gene StNAC262 between control and PEG-treated plants using real-time PCR, and the results demonstrated that they had inverse relationship. We suggested that Stu-miR164 might drive overexpression of NAC gene under osmotic stress in potato. To confirm the regulation of NAC TFs by Stu-mi164, we developed transgenic plants, using Agrobacterium tumefaciens–mediated transformation, of the potato cultivars “Gannongshu 2” and “Kexin 3” overexpressing the Stu-mi164 or the TF StNAC262. Real-time PCR analysis of transgenic potato plants under osmotic (PEG) stress, showed that potato plants overexpressing Stu-mi164 had reduced expression of StNAC262 and their osmotic resistance decreased. Furthermore, these plants had low number of lateral roots although the same length as the control. Our findings support the regulatory role of Stu-miRNAs in controlling plant response to osmotic stress via StNAC262.