Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiangwen Zhang is active.

Publication


Featured researches published by Jiangwen Zhang.


Nature | 2010

A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

Laura Poliseno; Leonardo Salmena; Jiangwen Zhang; Brett S. Carver; William J. Haveman; Pier Paolo Pandolfi

The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.


Science | 2010

High Resolution Analysis of Parent-of-Origin Allelic Expression in the Mouse Brain

Christopher Gregg; Jiangwen Zhang; Brandon Weissbourd; Shujun Luo; Gary P. Schroth; David Haig; Catherine Dulac

Parental Influences Genomic imprinting results in the preferential expression of either the paternally or the maternally inherited allele of certain genes. Two papers by Gregg et al. (p. 643, published online 8 July; and p. 682, published online 8 July; see the Perspective by Wilkinson) use a genome-wide approach to characterize the repertoire of genes with parent-of-origin allelic effects in the mouse embryonic and adult brain. The studies uncovered over 1300 loci with maternal or paternal allelic bias. Comparison of the parent-of-origin allelic expression bias in the adult hypothalamus and cortex, and in the developing brain, revealed spatiotemporal, sex-specific, and isoform-specific regulation. Parent-of-origin effects thus represent a major and dynamic mode of epigenetic regulation of gene expression in the brain. A large repertoire of genes shows preferential expression of the paternally or maternally inherited allele. Genomic imprinting results in preferential expression of the paternal or maternal allele of certain genes. We have performed a genome-wide characterization of imprinting in the mouse embryonic and adult brain. This approach uncovered parent-of-origin allelic effects of more than 1300 loci. We identified parental bias in the expression of individual genes and of specific transcript isoforms, with differences between brain regions. Many imprinted genes are expressed in neural systems associated with feeding and motivated behaviors, and parental biases preferentially target genetic pathways governing metabolism and cell adhesion. We observed a preferential maternal contribution to gene expression in the developing brain and a major paternal contribution in the adult brain. Thus, parental expression bias emerges as a major mode of epigenetic regulation in the brain.


Cancer Cell | 2011

SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization.

Lydia W.S. Finley; Arkaitz Carracedo; Jaewon Lee; Amanda Souza; Ainara Egia; Jiangwen Zhang; Julie Teruya-Feldstein; Paula I. Moreira; Sandra M. Cardoso; Clary B. Clish; Pier Paolo Pandolfi; Marcia C. Haigis

Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates required for biomass generation. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. Mechanistically, SIRT3 mediates metabolic reprogramming by destabilizing hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls glycolytic gene expression. SIRT3 loss increases reactive oxygen species production, leading to HIF1α stabilization. SIRT3 expression is reduced in human breast cancers, and its loss correlates with the upregulation of HIF1α target genes. Finally, we find that SIRT3 overexpression represses glycolysis and proliferation in breast cancer cells, providing a metabolic mechanism for tumor suppression.


Nature Genetics | 2010

Subtle variations in Pten dose determine cancer susceptibility

Andrea Alimonti; Arkaitz Carracedo; John G. Clohessy; Lloyd C. Trotman; Caterina Nardella; Ainara Egia; Leonardo Salmena; Katia Sampieri; William J. Haveman; Edi Brogi; Andrea L. Richardson; Jiangwen Zhang; Pier Paolo Pandolfi

Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Ptenhy/+), expressing 80% normal levels of Pten. Ptenhy/+ mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.


Science | 2010

Sex-Specific Parent-of-Origin Allelic Expression in the Mouse Brain

Christopher Gregg; Jiangwen Zhang; James E. Butler; David Haig; Catherine Dulac

Parental Influences Genomic imprinting results in the preferential expression of either the paternally or the maternally inherited allele of certain genes. Two papers by Gregg et al. (p. 643, published online 8 July; and p. 682, published online 8 July; see the Perspective by Wilkinson) use a genome-wide approach to characterize the repertoire of genes with parent-of-origin allelic effects in the mouse embryonic and adult brain. The studies uncovered over 1300 loci with maternal or paternal allelic bias. Comparison of the parent-of-origin allelic expression bias in the adult hypothalamus and cortex, and in the developing brain, revealed spatiotemporal, sex-specific, and isoform-specific regulation. Parent-of-origin effects thus represent a major and dynamic mode of epigenetic regulation of gene expression in the brain. The relative contributions of the paternal and maternal genomes differ in distinct brain regions and also in males and females. Genomic imprinting results in preferential gene expression from paternally versus maternally inherited chromosomes. We used a genome-wide approach to uncover sex-specific parent-of-origin allelic effects in the adult mouse brain. Our study identified preferential selection of the maternally inherited X chromosome in glutamatergic neurons of the female cortex. Moreover, analysis of the cortex and hypothalamus identified 347 autosomal genes with sex-specific imprinting features. In the hypothalamus, sex-specific imprinted genes were mostly found in females, which suggests parental influence over the hypothalamic function of daughters. We show that interleukin-18, a gene linked to diseases with sex-specific prevalence, is subject to complex, regional, and sex-specific parental effects in the brain. Parent-of-origin effects thus provide new avenues for investigation of sexual dimorphism in brain function and disease.


Immunity | 2009

Genome-wide Lineage-Specific Transcriptional Networks Underscore Ikaros-Dependent Lymphoid Priming in Hematopoietic Stem Cells

Samuel Y. Ng; Toshimi Yoshida; Jiangwen Zhang; Katia Georgopoulos

The mechanisms regulating lineage potential during early hematopoiesis were investigated. First, a cascade of lineage-affiliated gene expression signatures, primed in hematopoietic stem cells (HSCs) and differentially propagated in lineage-restricted progenitors, was identified. Lymphoid transcripts were primed as early as the HSC, together with myeloid and erythroid transcripts. Although this multilineage priming was resolved upon subsequent lineage restrictions, an unexpected cosegregation of lymphoid and myeloid gene expression and potential past a nominal myeloid restriction point was identified. Finally, we demonstrated that whereas the zinc finger DNA-binding factor Ikaros was required for induction of lymphoid lineage priming in the HSC, it was also necessary for repression of genetic programs compatible with self-renewal and multipotency downstream of the HSC. Taken together, our studies provide new insight into the priming and restriction of lineage potentials during early hematopoiesis and identify Ikaros as a key bivalent regulator of this process.


Genes & Development | 2008

The role of the chromatin remodeler Mi-2β in hematopoietic stem cell self-renewal and multilineage differentiation

Toshimi Yoshida; Idit Hazan; Jiangwen Zhang; Samuel Y. Ng; Taku Naito; Hugo J. Snippert; Elizabeth J. Heller; Xiaoqing Qi; Lee N. Lawton; Christine J. Williams; Katia Georgopoulos

The ability of somatic stem cells to self-renew and differentiate into downstream lineages is dependent on specialized chromatin environments that keep stem cell-specific genes active and key differentiation factors repressed but poised for activation. The epigenetic factors that provide this type of regulation remain ill-defined. Here we provide the first evidence that the SNF2-like ATPase Mi-2beta of the Nucleosome Remodeling Deacetylase (NuRD) complex is required for maintenance of and multilineage differentiation in the early hematopoietic hierarchy. Shortly after conditional inactivation of Mi-2beta, there is an increase in cycling and a decrease in quiescence in an HSC (hematopoietic stem cell)-enriched bone marrow population. These cycling mutant cells readily differentiate into the erythroid lineage but not into the myeloid and lymphoid lineages. Together, these effects result in an initial expansion of mutant HSC and erythroid progenitors that are later depleted as more differentiated proerythroblasts accumulate at hematopoietic sites exhibiting features of erythroid leukemia. Examination of gene expression in the mutant HSC reveals changes in the expression of genes associated with self-renewal and lineage priming and a pivotal role of Mi-2beta in their regulation. Thus, Mi-2beta provides the hematopoietic system with immune cell capabilities as well as with an extensive regenerative capacity.


Nature Immunology | 2012

Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis

Jiangwen Zhang; Audrey F. Jackson; Taku Naito; Marei Dose; John Seavitt; Feifei Liu; Elizabeth J. Heller; Mariko Kashiwagi; Toshimi Yoshida; Fotini Gounari; Howard T. Petrie; Katia Georgopoulos

Cell fate depends on the interplay between chromatin regulators and transcription factors. Here we show that activity of the Mi-2β nucleosome-remodeling and histone-deacetylase (NuRD) complex was controlled by the Ikaros family of lymphoid lineage–determining proteins. Ikaros, an integral component of the NuRD complex in lymphocytes, tethered this complex to active genes encoding molecules involved in lymphoid differentiation. Loss of Ikaros DNA-binding activity caused a local increase in chromatin remodeling and histone deacetylation and suppression of lymphoid cell–specific gene expression. Without Ikaros, the NuRD complex also redistributed to transcriptionally poised genes that were not targets of Ikaros (encoding molecules involved in proliferation and metabolism), which induced their reactivation. Thus, release of NuRD from Ikaros regulation blocks lymphocyte maturation and mediates progression to a leukemic state by engaging functionally opposing epigenetic and genetic networks.


Proceedings of the National Academy of Sciences of the United States of America | 2011

T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling

Kristine Germar; Marei Dose; Tassos Konstantinou; Jiangwen Zhang; Hongfang Wang; Camille Lobry; Kelly L. Arnett; Stephen C. Blacklow; Iannis Aifantis; Fotini Gounari

Although transcriptional programs associated with T-cell specification and commitment have been described, the functional hierarchy and the roles of key regulators in structuring/orchestrating these programs remain unclear. Activation of Notch signaling in uncommitted precursors by the thymic stroma initiates the T-cell differentiation program. One regulator first induced in these precursors is the DNA-binding protein T-cell factor 1 (Tcf-1), a T-cell–specific mediator of Wnt signaling. However, the specific contribution of Tcf-1 to early T-cell development and the signals inducing it in these cells remain unclear. Here we assign functional significance to Tcf-1 as a gatekeeper of T-cell fate and show that Tcf-1 is directly activated by Notch signals. Tcf-1 is required at the earliest phase of T-cell determination for progression beyond the early thymic progenitor stage. The global expression profile of Tcf-1–deficient progenitors indicates that basic processes of DNA metabolism are down-regulated in its absence, and the blocked T-cell progenitors become abortive and die by apoptosis. Our data thus add an important functional relationship to the roadmap of T-cell development.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy

Christelle P El-Haibi; George W. Bell; Jiangwen Zhang; Anthony Y. Collmann; David K. Wood; Cally M. Scherber; Eva Csizmadia; Odette Mariani; Cuihua Zhu; Antoine Campagne; Mehmet Toner; Sangeeta N. Bhatia; Daniel Irimia; Anne Vincent-Salomon; Antoine E. Karnoub

Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the ability to differentiate into multiple mesoderm lineages in the course of normal tissue homeostasis or during injury. We have previously shown that MSCs migrate to sites of tumorigenesis, where they become activated by cancer cells to promote metastasis. However, the molecular and phenotypic attributes of the MSC-induced metastatic state of the cancer cells remained undetermined. Here, we show that bone marrow-derived human MSCs promote de novo production of lysyl oxidase (LOX) from human breast carcinoma cells, which is sufficient to enhance the metastasis of otherwise weakly metastatic cancer cells to the lungs and bones. We also show that LOX is an essential component of the CD44-Twist signaling axis, in which extracellular hyaluronan causes nuclear translocation of CD44 in the cancer cells, thus triggering LOX transcription by associating with its promoter. Processed and enzymatically active LOX, in turn, stimulates Twist transcription, which mediates the MSC-triggered epithelial-to-mesenchymal transition (EMT) of carcinoma cells. Surprisingly, although induction of EMT in breast cancer cells has been tightly associated with the generation of cancer stem cells, we find that LOX, despite being critical for EMT, does not contribute to the ability of MSCs to promote the formation of cancer stem cells in the carcinoma cell populations. Collectively, our studies highlight a critical role for LOX in cancer metastasis and indicate that the signaling pathways controlling stroma-induced EMT are distinct from pathways regulating the development of cancer stem cells.

Collaboration


Dive into the Jiangwen Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pier Paolo Pandolfi

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Beibei Ru

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yin Tong

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge