Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiangxiazi Lin is active.

Publication


Featured researches published by Jiangxiazi Lin.


Nano Letters | 2016

Achieving Ultrahigh Carrier Mobility in Two-Dimensional Hole Gas of Black Phosphorus

Gen Long; Denis Maryenko; Junying Shen; Shuigang Xu; Jianqiang Hou; Zefei Wu; Wing Ki Wong; Tianyi Han; Jiangxiazi Lin; Yuan Cai; Rolf Walter Lortz; Ning Wang

We demonstrate that a field effect transistor (FET) made of few layer black phosphorus (BP) encapsulated in hexagonal boron nitride (h-BN) in vacuum, exhibts the room temperature hole mobility of 5200 cm 2 /Vs being limited just by the phonon scattering. At cryogenic tempeature the FET mobility increases up to 45,000 cm 2 /Vs, which is eight times higher compared with the mobility obtained in earlier reports. The unprecedentedly clean h-BN/BP/h-BN heterostructure exhibits Shubnikov-de Haas oscillations and quantum Hall effect with Landau level (LL) filling factors down to v=2 in conventional laboratory magnetic fields. Moreover, carrier density independent effective mass m=0.26 m0 is


arXiv: Materials Science | 2016

Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides

Shiuigang Xu; Zefei Wu; Huanhuan Lu; Yu Han; Gen Long; Xiaolong Chen; Tianyi Han; Weiguang Ye; Yingying Wu; Jiangxiazi Lin; Junying Shen; Yuan Cai; Yuheng He; Fan Zhang; Rolf Walter Lortz; Chun Cheng; Ning Wang

Low carrier mobility and high electrical contact resistance are two major obstacles prohibiting explorations of quantum transport in TMDCs. Here, we demonstrate an effective method to establish low-temperature Ohmic contacts in boron nitride encapsulated TMDC devices based on selective etching and conventional electron-beam evaporation of metal electrodes. This method works for most extensively studied TMDCs in recent years, including MoS2, MoSe2, WSe2, WS2, and 2H-MoTe2. Low electrical contact resistance is achieved at 2 K. All of the few-layer TMDC devices studied show excellent performance with remarkably improved field-effect mobilities ranging from 2300 cm2/V s to 16000 cm2/V s, as verified by the high carrier mobilities extracted from Hall effect measurements. Moreover, both high-mobility n-type and p-type TMDC channels can be realized by simply using appropriate contact metals. Prominent Shubnikov-de Haas oscillations have been observed and investigated in these high-quality TMDC devices.


Nano Letters | 2015

van der Waals Epitaxial Growth of Atomically Thin Bi2Se3 and Thickness-Dependent Topological Phase Transition

Shuigang Xu; Yu Han; Xiaolong Chen; Zefei Wu; Lin Wang; Tianyi Han; Weiguang Ye; Huanhuan Lu; Gen Long; Yingying Wu; Jiangxiazi Lin; Yuan Cai; Kin Ming Ho; Yuheng He; Ning Wang

Two-dimensional (2D) atomic-layered heterostructures stacked by van der Waals interactions recently introduced new research fields, which revealed novel phenomena and provided promising applications for electronic, optical, and optoelectronic devices. In this study, we report the van der Waals epitaxial growth of high-quality atomically thin Bi2Se3 on single crystalline hexagonal boron nitride (h-BN) by chemical vapor deposition. Although the in-plane lattice mismatch between Bi2Se3 and h-BN is approximately 65%, our transmission electron microscopy analysis revealed that Bi2Se3 single crystals epitaxially grew on h-BN with two commensurate states; that is, the (1̅21̅0) plane of Bi2Se3 was preferably parallel to the (1̅100) or (1̅21̅0) plane of h-BN. In the case of the Bi2Se3 (2̅110) ∥ h-BN (11̅00) state, the Moiré pattern wavelength in the Bi2Se3/h-BN superlattice can reach 5.47 nm. These naturally formed thin crystals facilitated the direct assembly of h-BN/Bi2Se3/h-BN sandwiched heterostructures without introducing any impurity at the interfaces for electronic property characterization. Our quantum capacitance (QC) measurements showed a compelling phenomenon of thickness-dependent topological phase transition, which was attributed to the coupling effects of two surface states from Dirac Fermions at/or above six quintuple layers (QLs) to gapped Dirac Fermions below six QLs. Moreover, in ultrathin Bi2Se3 (e.g., 3 QLs), we observed the midgap states induced by intrinsic defects at cryogenic temperatures. Our results demonstrated that QC measurements based on h-BN/Bi2Se3/h-BN sandwiched structures provided rich information regarding the density of states of Bi2Se3, such as quantum well states and Landau quantization. Our approach in fabricating h-BN/Bi2Se3/h-BN sandwiched device structures through the combination of bottom-up growth and top-down dry transferring techniques can be extended to other two-dimensional layered heterostructures.


Nature Communications | 2016

Even-odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides.

Zefei Wu; Shuigang Xu; Huanhuan Lu; Armin Khamoshi; Gui-Bin Liu; Tianyi Han; Yingying Wu; Jiangxiazi Lin; Gen Long; Yuheng He; Yuan Cai; Yugui Yao; Fan Zhang; Ning Wang

In few-layer (FL) transition metal dichalcogenides (TMDC), the conduction bands along the Gamma-K directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by three-fold rotational symmetry and time reversal symmetry. In even-layers the extra inversion symmetry requires all states to be Kramers degenerate, whereas in odd-layers the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. In this Letter, we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations for the Q valley electrons in FL transition metal disulfide (TMDs), as well as the first quantum Hall effect (QHE) in TMDCs. Our devices exhibit ultrahigh field-effect mobilities (~16,000 cm2V-1s-1 for FL WS2 and ~10,500 cm2V-1s-1 for FL MoS2) at cryogenic temperatures. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMD devices and a spin Zeeman effect in all even-layer TMD devices.In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs.


Physical Review B | 2015

Detection of interlayer interaction in few-layer graphene

Zefei Wu; Yu Han; Jiangxiazi Lin; Wei Zhu; Mingquan He; Shuigang Xu; Xiaolong Chen; Huanhuan Lu; Weiguang Ye; Tianyi Han; Yingying Wu; Gen Long; Junying Shen; Rui Huang; Lin Wang; Yuheng He; Yuan Cai; Rolf Walter Lortz; Dang Sheng Su; Ning Wang

Research Grants Council of Hong Kong [604112, N_HKUST613/12, 16302215, HKUST9/CRF/08, CRF_HKU9/CRF/13G]; Raith-HKUST Nanotechnology Laboratory electron-beam lithography facility [SEG HKUST08]


arXiv: Materials Science | 2016

Probing the electronic states and impurity effects in black phosphorus vertical heterostructures

Xiaolong Chen; Lin Wang; Yingying Wu; Heng Gao; Yabei Wu; Guanhua Qin; Zefei Wu; Yu Han; Shuigang Xu; Tianyi Han; Weiguang Ye; Jiangxiazi Lin; Gen Long; Yuheng He; Yuan Cai; Wei Ren; Ning Wang

Atomically thin black phosphorus (BP) is a promising two-dimensional material for fabricating electronic and optoelectronic nano-devices with high mobility and tunable bandgap structures. However, the charge-carrier mobility in few-layer phosphorene (monolayer BP) is mainly limited by the presence of impurity and disorders. In this study, we demonstrate that vertical BP heterostructure devices offer great advantages in probing the electron states of monolayer and few-layer phosphorene at temperatures down to 2 K through capacitance spectroscopy. Electronic states in the conduction and valence bands of phosphorene are accessible over a wide range of temperature and frequency. Exponential band tails have been determined to be related to disorders. Unusual phenomena such as the large temperature-dependence of the electron state population in few-layer phosphorene have been observed and systematically studied. By combining the first-principles calculation, we identified that the thermal excitation of charge trap states and oxidation-induced defect states were the main reasons for this large temperature dependence of the electron state population and degradation of the on-off ratio in phosphorene field-effect transistors.


Physical Review Letters | 2017

Odd-Integer Quantum Hall States and Giant Spin Susceptibility in p -Type Few-Layer WSe2

Shuigang Xu; Junying Shen; Gen Long; Zefei Wu; Zhiqiang Bao; Cheng-Cheng Liu; Xiao Xiao; Tianyi Han; Jiangxiazi Lin; Yingying Wu; Huanhuan Lu; Jianqiang Hou; Liheng An; Yuanwei Wang; Yuan Cai; Kin Ming Ho; Yuheng He; Rolf Walter Lortz; Fan Zhang; Ning Wang

We fabricate high-mobility p-type few-layer WSe_{2} field-effect transistors and surprisingly observe a series of quantum Hall (QH) states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field. By tilting the magnetic field, we discover Landau level crossing effects at ultralow coincident angles, revealing that the Zeeman energy is about 3 times as large as the cyclotron energy near the valence band top at the Γ valley. This result implies the significant roles played by the exchange interactions in p-type few-layer WSe_{2}, in which itinerant or QH ferromagnetism likely occurs. Evidently, the Γ valley of few-layer WSe_{2} offers a unique platform with unusually heavy hole carriers and a substantially enhanced g factor for exploring strongly correlated phenomena.


ACS Nano | 2017

Isolation and Characterization of Few-Layer Manganese Thiophosphite

Gen Long; Ting Zhang; Xiangbin Cai; Jin Hu; Chang-woo Cho; Shuigang Xu; Junying Shen; Zefei Wu; Tianyi Han; Jiangxiazi Lin; Jingwei Wang; Yuan Cai; Rolf Walter Lortz; Zhiqiang Mao; Ning Wang

This work reports an experimental study on an antiferromagnetic honeycomb lattice of MnPS3 that couples the valley degree of freedom to a macroscopic antiferromagnetic order. The crystal structure of MnPS3 is identified by high-resolution scanning transmission electron microscopy. Layer-dependent angle-resolved polarized Raman fingerprints of the MnPS3 crystal are obtained, and the Raman peak at 383 cm-1 exhibits 100% polarity. Temperature dependences of anisotropic magnetic susceptibility of the MnPS3 crystal are measured in a superconducting quantum interference device. Anisotropic behaviors of the magnetic moment are explored on the basis of the mean field approximation model. Ambipolar electronic conducting channels in MnPS3 are realized by the liquid gating technique. The conducting channel of MnPS3 offers a platform for exploring the spin/valleytronics and magnetic orders in 2D limitation.


arXiv: Mesoscale and Nanoscale Physics | 2016

Type-controlled Nanodevices Based on Encapsulated Few-layer Black Phosphorus for Quantum Transport

Gen Long; Shuigang Xu; Junying Shen; Jianqiang Hou; Zefei Wu; Tianyi Han; Jiangxiazi Lin; Wing Ki Wong; Yuan Cai; Rolf Walter Lortz; Ning Wang

We demonstrate that encapsulation of atomically thin black phosphorus (BP) by hexagonal boron nitride (h-BN) sheets is very effective for minimizing the interface impurities induced during fabrication of BP channel material for quantum transport nanodevices. Highly stable BP nanodevices with ultrahigh mobility and controllable types are realized through depositing appropriate metal electrodes after conducting a selective etching to the BP encapsulation structure. Chromium and titanium are suitable metal electrodes for BP channels to control the transition from a p-type unipolar property to ambipolar characteristic because of different work functions. Record-high mobilities of 6000 cm2 V−1 s−1 and 8400 cm2 V−1 s−1 are respectively obtained for electrons and holes at cryogenic temperatures. High-mobility BP devices enable the investigation of quantum oscillations with an indistinguishable Zeeman effect in laboratory magnetic field.


Physical Review B | 2016

Negative Compressibility in Graphene-terminated Black Phosphorus Heterostructures

Yingying Wu; Xiaolong Chen; Zefei Wu; Shuigang Xu; Tianyi Han; Jiangxiazi Lin; Brian Skinner; Yuan Cai; Yuheng He; Chun Cheng; Ning Wang

Negative compressibility generated by many-body effects in 2D electronic systems can enhance gate capacitance. We observe capacitance enhancement in a newly emerged 2D layered material, atomically thin black phosphorus (BP). The encapsulation of BP by hexagonal boron nitride sheets with few-layer graphene as a terminal ensures ultraclean heterostructure interfaces, allowing us to observe negative compressibility at low hole carrier concentrations. We explained the negative compressibility based on the Coulomb correlation among in-plane charges and their image charges in a gate electrode in the framework of Debye screening.

Collaboration


Dive into the Jiangxiazi Lin's collaboration.

Top Co-Authors

Avatar

Tianyi Han

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ning Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zefei Wu

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shuigang Xu

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Gen Long

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yuan Cai

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yingying Wu

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yuheng He

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Junying Shen

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Rolf Walter Lortz

Hong Kong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge