Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianhua Gu is active.

Publication


Featured researches published by Jianhua Gu.


Cancer Research | 2010

Sustained Small Interfering RNA Delivery by Mesoporous Silicon Particles

Takemi Tanaka; Lingegowda S. Mangala; Pablo Vivas-Mejia; René Nieves-Alicea; Aman P. Mann; Edna Mora; Hee Dong Han; Mian M.K. Shahzad; Xuewu Liu; Rohan Bhavane; Jianhua Gu; Jean R. Fakhoury; Ciro Chiappini; Chunhua Lu; Koji Matsuo; Biana Godin; Rebecca L. Stone; Alpa M. Nick; Gabriel Lopez-Berestein; Anil K. Sood; Mauro Ferrari

RNA interference (RNAi) is a powerful approach for silencing genes associated with a variety of pathologic conditions; however, in vivo RNAi delivery has remained a major challenge due to lack of safe, efficient, and sustained systemic delivery. Here, we report on a novel approach to overcome these limitations using a multistage vector composed of mesoporous silicon particles (stage 1 microparticles, S1MP) loaded with neutral nanoliposomes (dioleoyl phosphatidylcholine, DOPC) containing small interfering RNA (siRNA) targeted against the EphA2 oncoprotein, which is overexpressed in most cancers, including ovarian. Our delivery methods resulted in sustained EphA2 gene silencing for at least 3 weeks in two independent orthotopic mouse models of ovarian cancer following a single i.v. administration of S1MP loaded with EphA2-siRNA-DOPC. Furthermore, a single administration of S1MP loaded with-EphA2-siRNA-DOPC substantially reduced tumor burden, angiogenesis, and cell proliferation compared with a noncoding control siRNA alone (SKOV3ip1, 54%; HeyA8, 57%), with no significant changes in serum chemistries or in proinflammatory cytokines. In summary, we have provided the first in vivo therapeutic validation of a novel, multistage siRNA delivery system for sustained gene silencing with broad applicability to pathologies beyond ovarian neoplasms.


Biomaterials | 2009

The association of silicon microparticles with endothelial cells in drug delivery to the vasculature

Rita E. Serda; Jianhua Gu; Rohan Bhavane; Xuewu Liu; Ciro Chiappini; Paolo Decuzzi; Mauro Ferrari

Endothelial targeting is an approach evolving for drug delivery to the vasculature of pathological lesions. Nano-porous silicon-based multi-functional particles are of particular interest, since they can be manufactured in essentially any size and shape, employing methods of photolithography, to optimize their ability to localize on target endothelia. In this study we tested the impact of surface charge, serum opsonization, and inflammation on the ability of vascular endothelial cells to associate with nano-porous silicon microparticles. Vascular endothelial cells were capable of rapidly internalizing both positive and negative silicon microparticles by an actin-dependent mechanism involving both phagocytosis and macropinocytosis. However, following serum opsonization, internalization was selective for APTES (originally positive) modified microparticles, despite the finding that all opsonized microparticles had a net negative charge. Conversely, macrophages displayed a preference for internalization of serum opsonized oxidized (originally negative) microparticles, supporting the choice of positive microparticles for endothelial targeting. The internalization of opsonized microparticles by endothelial cells was further enhanced by the presence of inflammatory cytokines. These findings suggest that it may be possible to bioengineer silicon microparticles to favor opsonization with proteins that enhance uptake by endothelial cells, without a concurrent enhanced uptake by macrophages.


Journal of Biomedical Materials Research Part A | 2010

Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation

Biana Godin; Jianhua Gu; Rita E. Serda; Rohan Bhavane; Ennio Tasciotti; Ciro Chiappini; Xuewu Liu; Takemi Tanaka; Paolo Decuzzi; Mauro Ferrari

Injectable and implantable porosified silicon (pSi) carriers and devices for prolonged and controlled delivery of biotherapeutics offer great promise for treatment of various chronic ailments and acute conditions. Polyethylene glycols (PEGs) are important surface modifiers currently used in clinic mostly to avoid uptake of particulates by reticulo-endothelial system (RES). In this work we show for the first time that covalent attachment of PEGs to the pSi surface can be used as a means to tune degradation kinetics of silicon structures. Seven PEGs with varying molecular weights (245, 333, 509, 686, 1214, 3400, and 5000 Da) were employed and the degradation of PEGylated pSi hemispherical microparticles in simulated physiological conditions was monitored by means of ICP-AES, SEM, and fluorimetry. Biocompatibility of the systems with human macrophages in vitro was also evaluated. The results clearly indicate that controlled PEGylation of silicon microparticles can offer a sensitive tool to finely tune their degradation kinetics and that the systems do not induce release of proinflammatory cytokines IL-6 and IL-8 in THP1 human macrophages.


International Journal of Pharmaceutics | 2010

In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice

Takemi Tanaka; Biana Godin; Rohan Bhavane; René Nieves-Alicea; Jianhua Gu; Xinming Liu; Ciro Chiappini; J. R. Fakhoury; S. Amra; A. Ewing; Q. Li; Isaiah J Fidler; Mauro Ferrari

Porous silicon (pSi) is being extensively studied as an emerging material for use in biomedical applications, including drug delivery, based on the biodegradability and versatile chemical and biophysical properties. We have recently introduced multistage nanoporous silicon microparticles (S1MP) designed as a cargo for nanocarrier drug delivery to enable the loaded therapeutics and diagnostics to sequentially overcome the biological barriers in order to reach their target. In this first report on biocompatibility of intravenously administered pSi structures, we examined the tolerability of negatively (-32.5±3.1mV) and positively (8.7±2.5mV) charged S1MP in acute single dose (10(7), 10(8), 5×10(8) S1MP/animal) and subchronic multiple dose (10(8) S1MP/animal/week for 4 weeks) administration schedules. Our data demonstrate that S1MP did not change plasma levels of renal (BUN and creatinine) and hepatic (LDH) biomarkers as well as 23 plasma cytokines. LDH plasma levels of 145.2±23.6, 115.4±29.1 vs. 127.0±10.4; and 155.8±38.4, 135.5±52.3 vs. 178.4±74.6 were detected in mice treated with 10(8) negatively charged S1MP, 10(8) positively charged S1MP vs. saline control in single and multiple dose schedules, respectively. The S1MPs did not alter LDH levels in liver and spleen, nor lead to infiltration of leukocytes into the liver, spleen, kidney, lung, brain, heart, and thyroid. Collectively, these data provide evidence of a safe intravenous administration of S1MPs as a drug delivery carrier.


ACS Nano | 2013

High Capacity Nanoporous Silicon Carrier for Systemic Delivery of Gene Silencing Therapeutics

Jianliang Shen; Rong Xu; Junhua Mai; Han Cheon Kim; Xiaojing Guo; Guoting Qin; Yong Yang; Joy Wolfram; Chaofeng Mu; Xiaojun Xia; Jianhua Gu; Xuewu Liu; Zong-Wan Mao; Mauro Ferrari; Haifa Shen

Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However, lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study, we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91 and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells, causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage, PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice, including changes in serum cytokines, chemokines, and colony-stimulating factors. In addition, weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of subacute toxicity based on changes in body weight, hematology, blood chemistry, and major organ histology. Collectively, the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents.


Cytometry Part A | 2009

Quantitative mechanics of endothelial phagocytosis of silicon microparticles.

Rita E. Serda; Jianhua Gu; Jared K. Burks; Kim Ferrari; Chiara Ferrari; Mauro Ferrari

Endothelia, once thought of as a barrier to the delivery of therapeutics, is now a major target for tissue‐specific drug delivery. Tissue‐ and disease‐specific molecular presentations on endothelial cells provide targets for anchoring or internalizing delivery vectors. Porous silicon delivery vectors are phagocytosed by vascular endothelial cells. The rapidity and efficiency of silicon microparticle uptake lead us to delineate the kinetics of internalization. To discriminate between surface‐attached and ‐internalized microparticles, we developed a double fluorescent/FRET flow cytometric approach. The approach relies on quenching of antibody‐conjugated fluorescein isothiocyanate covalently attached to the microparticle surface by attachment of a secondary antibody labeled with an acceptor fluorophore, phycoerythrin. The resulting half‐time for microparticle internalization was 15.7 min, with confirmation provided by live confocal imaging as well as transmission electron microscopy.


Biomaterials | 2014

Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells.

Mingzhen Zhang; Rong Xu; Xiaojun Xia; Yong Yang; Jianhua Gu; Guoting Qin; Xuewu Liu; Mauro Ferrari; Haifa Shen

Nanoporous silicon particles (pSi), with a pore size in the range of 20-60 nm, were modified with polyethyleneimine (PEI) to yield pSi-PEI particles, which were subsequently complexed with siRNA. Thus, pSi-PEI/siRNA particles were fabricated, with the PEI/siRNA nanocomplexes mainly anchored inside the nanopore of the pSi particles. These hybrid particles were used as carriers to deliver siRNA to human breast cancer cells. Due to the gradual degradation of the pSi matrix under physiological conditions, the PEI/siRNA nanocomplexes were released from the pore interior in a sustained manner. Physicochemical characterization revealed that the released PEI/siRNA nanocomplexes exhibited well-defined spherical shape and narrow particle size distribution between 15 and 30 nm. Gene knockdown against the ataxia telangiectasia mutated (ATM) cancer gene showed dramatic gene silencing efficacy. Moreover, comprehensive biocompatibility studies were performed for the pSi-PEI/siRNA particles both in vitro and in vivo and demonstrated that the pSi-PEI particles exhibited significantly enhanced biocompatibility. As a consequence, PEI-modified porous silicon particles may have substantial potential as safe and effective siRNA delivery systems.


Molecular Pharmaceutics | 2012

Activation of the Inflammasome and Enhanced Migration of Microparticle-Stimulated Dendritic Cells to the Draining Lymph Node

Ismail M. Meraz; Brenda Melendez; Jianhua Gu; Stephen T. C. Wong; Xuewu Liu; Helen A. Andersson; Rita E. Serda

Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the NLRP3-dependent inflammasome. Inoculation of BALB/c mice with ligand-bound microparticles induces a significant increase in circulating levels of IL-1β, TNF-α, and IL-6. Stimulation of BMDC with ligand-bound microparticles increases surface expression of costimulatory and MHC molecules, and enhances migration of BMDC to the draining lymph node. LPS-microparticles stimulate in vivo C57BL/6 BMDC and OT-1 transgenic T cell interactions in the presence of OVA SIINFEKL peptide in lymph nodes, with intact nodes imaged using two-photon microscopy. Formation of in vivo and in vitro immunological synapses between BMDC, loaded with OVA peptide and LPS-microparticles, and OT-1 T cells are presented, as well as elevated intracellular interferon gamma levels in CD8(+) T cells stimulated by BMDC carrying peptide-loaded microparticles. In short, ligand-bound microparticles enhance (1) phagocytosis of microparticles; (2) BMDC inflammasome activation and upregulation of costimulatory and MHC molecules; (3) cellular migration of BMDC to lymphatic tissue; and (4) cellular interactions leading to T cell activation in the presence of antigen.


Colloids and Surfaces B: Biointerfaces | 2015

Multistage vector delivery of sulindac and silymarin for prevention of colon cancer

Maria Principia Scavo; Emanuela Gentile; Joy Wolfram; Jianhua Gu; Michele Barone; Michael Evangelopoulos; Jonathan O. Martinez; Xuewu Liu; Christian Celia; Ennio Tasciotti; Eduardo Vilar; Haifa Shen

Familial adenomatous polyposis (FAP) is an inherited condition secondary to germline mutations in the APC gene, thus resulting in the formation of hundreds of colonic adenomas that eventually progress into colon cancer. Surgical removal of the colon remains the only treatment option to avoid malignancy, as long-term exposure to chemopreventive agents such as sulindac (a non-steroidal anti-inflammatory drug) and silymarin (phytoestrogen) is not feasible. Here, we have developed a multistage silicon-based drug delivery platform for sulindac and silymarin that preferentially interacts with colon cancer cells as opposed to normal intestinal mucosa. Preferential binding and internalization of these drugs into colon cancer cells was obtained using a targeting strategy against the protein meprin A, which we demonstrate is overexpressed in human colon cancer cells and in the small intestine of Apc(Min/+) mice. We propose that this delivery system could potentially be used to reduce drug-induced side effects in FAP patients, thus enabling long-term prevention of adenoma formation.


Journal of Controlled Release | 2014

Enhanced gene delivery in porcine vasculature tissue following incorporation of adeno-associated virus nanoparticles into porous silicon microparticles

Kellie I. McConnell; Jessica Rhudy; Kenji Yokoi; Jianhua Gu; Aaron Mack; Junghae Suh; Saverio La Francesca; Jason Sakamoto; Rita E. Serda

There is an unmet clinical need to increase lung transplant successes, patient satisfaction and to improve mortality rates. We offer the development of a nanovector-based solution that will reduce the incidence of lung ischemic reperfusion injury (IRI) leading to graft organ failure through the successful ex vivo treatment of the lung prior to transplantation. The innovation is in the integrated application of our novel porous silicon (pSi) microparticles carrying adeno-associated virus (AAV) nanoparticles, and the use of our ex vivo lung perfusion/ventilation system for the modulation of pro-inflammatory cytokines initiated by ischemic pulmonary conditions prior to organ transplant that often lead to complications. Gene delivery of anti-inflammatory agents to combat the inflammatory cascade may be a promising approach to prevent IRI following lung transplantation. The rationale for the device is that the microparticle will deliver a large payload of virus to cells and serve to protect the AAV from immune recognition. The microparticle-nanoparticle hybrid device was tested both in vitro on cell monolayers and ex vivo using either porcine venous tissue or a pig lung transplantation model, which recapitulates pulmonary IRI that occurs clinically post-transplantation. Remarkably, loading AAV vectors into pSi microparticles increases gene delivery to otherwise non-permissive endothelial cells.

Collaboration


Dive into the Jianhua Gu's collaboration.

Top Co-Authors

Avatar

Rita E. Serda

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Mauro Ferrari

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Xuewu Liu

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Ismail M. Meraz

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Biana Godin

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Haifa Shen

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Jessica Rhudy

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Rohan Bhavane

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Takemi Tanaka

Thomas Jefferson University

View shared research outputs
Researchain Logo
Decentralizing Knowledge