Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianhua Tan is active.

Publication


Featured researches published by Jianhua Tan.


Science of The Total Environment | 2008

Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China

Xianzhi Peng; Yiyi Yu; Caiming Tang; Jianhua Tan; Qiuxin Huang; Zhendi Wang

A scoping study was conducted to investigate the residues of nineteen pharmaceuticals and personal care products (PPCPs), including 4 natural and 3 synthetic steroid estrogens, 7 endocrine-disrupting phenols, and 5 acid pharmaceuticals in three urban streams and the Major Pearl River at Guangzhou, a megapolis in the Pearl River Delta, South China. Estrone was detected in >60% water samples with a maximum concentration of 65 ng L(-1). Endocrine-disrupting phenols (nonylphenol, bisphenol A, triclosan, 2-phenylphenol, methyparaben, and propylparaben) were found to be widely present at rather high concentrations in the urban riverine water of Guangzhou. Salicylic acid, clofibric acid and ibuprofen were detected in most water samples with maximum concentrations of 2098, 248 and 1417 ng L(-1) respectively, whereas naproxen was less frequently detected and also at lower concentration. Both the detection frequencies and median concentrations of the PPCPs appeared higher during the low-flow season than during the high-flow season. The seasonal difference in PPCPs occurrence was probably attributed to the dilution effect caused by the rainfall. PPCPs in the urban riverine water of Guangzhou originated mainly from random discharge and/or leakage of municipal wastewater. PPCPs contamination in the Major Pearl River may be of a potential environmental issue, especially during the low-flow season.


Environment International | 2009

Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China

Xianzhi Peng; Caiming Tang; Yiyi Yu; Jianhua Tan; Qiuxin Huang; Jiang-Ping Wu; She-Jun Chen; Bi-Xian Mai

Wastewater has proved to be a significant source of polybrominated diphenyl ethers (PBDEs) in the environment. Seventeen congeners from tri- to deca-BDEs were determined to characterize the occurrence, fate, and transport of PBDEs in two sewage treatment plants in the Pearl River Delta, South China. The PBDE concentrations varied substantially from 13.3 to 2496.4 ng L(-1) in the raw wastewater, depending on the wastewater types and contents of the suspended particulate matter (SPM). The concentrations declined to 0.9 to 4.4 ng L(-1) in the treated effluent and were closely associated with SPM contents. BDE-209 was the predominant congener in the wastewater and sewage sludge. Most of PBDEs might have ended up in the sewage sludge, with <4.7% being discharged with the treated effluent. The results revealed that PBDEs were not significantly degraded by biological treatment and chlorination in the STPs. An annual release of PBDEs was estimated at 2280 kg/year through wastewater from the Pearl River Delta.


Environmental Toxicology and Chemistry | 2008

Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China.

Xianzhi Peng; Jianhua Tan; Caiming Tang; Yiyi Yu; Zhendi Wang

A feasible method has been optimized to simultaneously determine multiclass antibiotic residues, including sulfonamides, fluoroquinolones, trimethoprim, and chloramphenicol in urban riverine water and wastewater by off-line solid phase extraction and high-performance liquid chromatography coupled with a diode-array ultraviolet detector and a fluorescence detector. Internal standard and standard addition methods were used in combination to identify and quantify these antibiotics to compensate for the matrix interference. The method quantification limits (MQLs) were determined to be 0.035 to 0.100 microg/L and 0.100 to 0.300 microg/L for the riverine water and wastewater, respectively. Recoveries of the investigated antibiotics ranged from 63 to 126%. Sulfamethoxazole was the most frequently detected antibiotic residue in Guangzhou section of the Major Pearl River, South China, with a maximum level of 0.510 microg/L. Fluoroquinolone antibiotics were relatively less detected with a maximum level of 0.459 microg/L. The maximum concentration of sulfamethoxazole reached 5.597 microg/L in the raw wastewater from a large-scale sewage treatment plant in Guangzhou city. Around 30% of sulfamethoxazole might survive the primary clarification and biotreatment processes in the sewage treatment plant. None of the investigated antibiotics have been found above MQLs in the final effluent after chlorine disinfection.


Science of The Total Environment | 2014

Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China

Xianzhi Peng; Weihui Ou; Chunwei Wang; Zhifang Wang; Qiuxin Huang; Jiabin Jin; Jianhua Tan

Pharmaceutical and personal care products (PPCPs), including antibiotics, azole anti-fungals, non-steroid anti-inflammatory drugs, lipid regulators, parabens, antiseptics, and bisphenol A, were investigated in groundwater and reservoirs in the vicinity of two municipal landfills in the metropolis of Guangzhou, South China. Dehydroerythromycin, sulfamethoxazole, fluconazole, salicylic acid, methylparaben, triclosan, and bisphenol A were the mostly frequently detected PPCPs in the groundwater at low ng L(-1) levels. In the reservoirs, the PPCPs were widely detected at higher frequencies and concentrations, especially sulfamethoxazole, propiconazole, and ibuprofen, with maximal concentrations above 1 μg L(-1). The PPCPs in the groundwater did not show significant seasonal differences or spatial trends. However, in the reservoirs, higher PPCP concentrations were observed in spring than in other seasons. The anti-bacterials in the groundwater posed medium risks to algae. In the reservoirs, the sulfonamides and macrolides posed low to high risks, while ibuprofen, salicylic acid, and clofibric acid presented low to medium risks to aquatic organisms. Overall, the results showed that the PPCP contaminants and subsequent ecological risks in the groundwater and surface water in the vicinity of the landfills may be of serious concern. More research is needed to better correlate the landfill leachates and PPCP contamination in the nearby aquatic environments.


Journal of Hazardous Materials | 2017

Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China

Xianzhi Peng; Songsong Xiong; Weihui Ou; Zhifang Wang; Jianhua Tan; Jiabin Jin; Caiming Tang; Jun Liu; Yujuan Fan

A variety of personal care products have been classified as emerging contaminants (ECs). Occurrence, fate, spatial and vertical profiles of 13 ultraviolet absorbents, triclocarban (TCC) and its dechlorinated products, triclosan (TCS), 2-phenylphenol and parabens were investigated in riverine and estuarine sediment of the Pearl River catchment, China. Bisphenol A (BPA), a widely applied plasticizer, was also investigated. The ECs were widely present in the bed sediment. TCC was the most abundant with a maximum concentration of 332ngg-1 dry weight. The other prominent ECs included BPA, TCS, octocrylene, and benzotriazole UV stabilizers UV326 and UV328. Treated wastewater effluent was the major source of the ECs in the riverine sediment. TCC, BPA, TCS, methyparaben, UV531, UV326, and UV328 were also detected throughout the estuarine sediment cores, indicating their persistence in the sediment. Temporal trends of the ECs in the sediment cores reflected a combined effect of industrial development, population growth, human life quality improvement, and waste treatment capacity in the Pearl River Delta over the last decades. TCC dechlorination products were frequently detected in the bed sediment with higher levels near treated effluent outlets but only occasionally observed in the sediment cores, suggesting insignificant in-situ TCC dechlorination in the sediment.


Journal of Chromatography A | 2014

Determination of perfluorooctanoic acid and perfluorooctane sulfonate in cooking oil and pig adipose tissue using reversed-phase liquid-liquid extraction followed by high performance liquid chromatography tandem mass spectrometry.

Caiming Tang; Jianhua Tan; Chunwei Wang; Xianzhi Peng

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are two perfluorinated compounds (PFCs) ubiquitously present in the environment, which could pose potential adverse effects on human health. Contamination and presence of PFOA and PFOS should be eliminated or rigidly restricted in food stuffs such as cooking oils and lard (from pig adipose tissue). This work describes a rapid, simple, reliable and sensitive method for quantitative analysis of PFOA and PFOS in cooking oils and pig adipose tissue with liquid chromatography tandem mass spectrometry (LC-MS/MS). The pretreatment mainly included a one-step reversed-phase liquid-liquid extraction using the mixture of basified water/methanol as the aqueous system, and dichloromethane (DCM) as the non-polar system. PFOA and PFOS can be successfully separated from the two lipid-rich matrices, i.e., cooking oil and adipose tissue, and extracted into the aqueous system, and then directly analyzed with LC-MS/MS. This method was validated in terms of accuracy (both intra- and inter-batch), precision, recovery, linearity, sensitivity and applicability. The intra-batch accuracies for PFOA and PFOS in cooking oil samples were within 93.9-101.9% with relative standard deviation (RSD) no more than 10.9%, and the inter-batch accuracies were 91.2-96.2% with RSD not exceeding 10.0%. The intra-batch accuracies of the analytes in pig adipose tissue samples were 102.9-113.0% with RSD of 8.8-13.1%. And the quantification ranges of PFOA and PFOS were 0.01-25ng/mL. This method has been applied to the analysis of PFOA and PFOS in real samples collected from local markets in Guangzhou, China.


Journal of Chromatography A | 2017

Chlorine and bromine isotope fractionation of halogenated organic pollutants on gas chromatography columns

Caiming Tang; Jianhua Tan; Songsong Xiong; Jun Liu; Yujuan Fan; Xianzhi Peng

Compound-specific chlorine/bromine isotope analysis (CSIA-Cl/Br) has become a powerful approach to investigate degradation pathways and apportion sources of halogenated organic pollutants (HOPs) in the environment. CSIA-Cl/Br is usually conducted by gas chromatography-mass spectrometry (GC-MS), which could be negatively impacted by isotope fractionation on GC columns. In this study, on-column Cl/Br isotope fractionation of 31 organochlorines and 4 organobromines was explored using GC-double focus magnetic-sector high resolution MS (GC-DFS-HRMS). Twenty-nine HOPs exhibited inverse Cl/Br isotope fractionation for which the heavier isotopologues eluted faster than the lighter ones on GC columns, and two polychlorinated biphenyls (PCB-138 and PCB-153) showed normal isotope fractionation, whereas the rest four HOPs did not show observable isotope fractionation. The isotope fractionation extents varied from -13.0‰ to 73.1‰. Mechanisms of the on-column Cl/Br isotope fractionation were tentatively elucidated with a modified two-film model. The results demonstrate that integrating peak area as complete as possible for separable chromatographic peaks and integrating the middle retention-time segments for the inseparable peaks are helpful to improve precision and accuracy of the CSIA-Cl/Br data. The findings of this study will shed light on development of CSIA-Cl/Br methods with respect to improving precision and accuracy.


Journal of Chromatography A | 2016

Quasi-targeted analysis of hydroxylation-related metabolites of polycyclic aromatic hydrocarbons in human urine by liquid chromatography-mass spectrometry.

Caiming Tang; Jianhua Tan; Ruifang Fan; Bo Zhao; Caixing Tang; Weihui Ou; Jiabin Jin; Xianzhi Peng

Metabolite identification is crucial for revealing metabolic pathways and comprehensive potential toxicities of polycyclic aromatic hydrocarbons (PAHs) in human body. In this work, a quasi-targeted analysis strategy was proposed for metabolite identification of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in human urine using liquid chromatography triple quadruple mass spectrometry (LC-QqQ-MS/MS) combined with liquid chromatography high resolution mass spectrometry (LC-HRMS). Potential metabolites of OH-PAHs were preliminarily screened out by LC-QqQ-MS/MS in association with filtering in a self-constructed information list of possible metabolites, followed by further identification and confirmation with LC-HRMS. The developed method can provide more reliable and systematic results compared with traditional untargeted analysis using LC-HRMS. In addition, data processing for LC-HRMS analysis were greatly simplified. This quasi-targeted analysis method was successfully applied to identifying phase I and phase II metabolites of OH-PAHs in human urine. Five metabolites of hydroxynaphthalene, seven of hydroxyfluorene, four of hydroxyphenanthrene, and three of hydroxypyrene were tentatively identified. Metabolic pathways of PAHs in human body were putatively revealed based on the identified metabolites. The experimental results will be valuable for investigating the metabolic processes of PAHs in human body, and the quasi-targeted analysis strategy can be expanded to the metabolite identification and profiling of other compounds in vivo.


Science of The Total Environment | 2006

A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China

Xianzhi Peng; Zhendi Wang; Wenxing Kuang; Jianhua Tan; Ken Li


Science of The Total Environment | 2007

Temporal trends of nonylphenol and bisphenol A contamination in the Pearl River Estuary and the adjacent South China Sea recorded by dated sedimentary cores

Xianzhi Peng; Zhendi Wang; Bi-Xian Mai; Fanrong Chen; She-Jun Chen; Jianhua Tan; Yiyi Yu; Caiming Tang; Kechang Li; Gan Zhang; Chun Yang

Collaboration


Dive into the Jianhua Tan's collaboration.

Top Co-Authors

Avatar

Xianzhi Peng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Caiming Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yiyi Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiabin Jin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Songsong Xiong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yujuan Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiuxin Huang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge