Jianing Yao
The Institute of Optics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianing Yao.
Scientific Reports | 2013
Panomsak Meemon; Jianing Yao; Kye-Sung Lee; Kevin P. Thompson; Michael Ponting; Eric Baer; Jannick P. Rolland
Gradient Refractive INdex (GRIN) optical components have historically fallen short of theoretical expectations. A recent breakthrough is the manufacturing of nanolayered spherical GRIN (S-GRIN) polymer optical elements, where the construction method yields refractive index gradients that exceed 0.08. Here we report on the application of optical coherence tomography (OCT), including micron-class axial and lateral resolution advances, as effective, innovative methods for performing nondestructive diagnostic metrology on S-GRIN. We show that OCT can be used to visualize and quantify characteristics of the material throughout the manufacturing process. Specifically, internal film structure may be revealed and data are processed to extract sub-surface profiles of each internal film of the material to quantify 3D film thickness and homogeneity. The technique provides direct feedback into the fabrication process directed at optimizing the quality of the nanolayered S-GRIN polymer optical components.
Optics Express | 2015
Jianing Yao; Panomsak Meemon; Michael Ponting; Jannick P. Rolland
The fabrication of high-performance spherical gradient refractive index (S-GRIN) optics requires nondestructive metrology techniques to inspect the samples. We have developed an angular-scan, swept-source-based, Fourier-domain optical coherence tomography (OCT) system centered at 1318 nm with 5 mm imaging depth capable of 180° polar scan and 360° azimuthal scan to investigate polymeric S-GRIN preforms. We demonstrate a method that enables simultaneous mapping of the group optical thickness, physical thickness, the radially-averaged group refractive index, and the transmitted wavefront of the S-GRIN preforms. The angular scan OCT imaging and metrology enables direct visualization, molding uniformity characterization, and optical property evaluations of the preforms. The results on two generations of S-GRIN preforms are discussed that showcase the evolution of the manufacturing process in response to the OCT metrology feedback.
Optics Letters | 2016
Panomsak Meemon; Jianing Yao; Ying-Ju Chu; Fernando Zvietcovich; Kevin J. Parker; Jannick P. Rolland
Elastography is a technique that measures and maps the local elastic property of biological tissues. Aiming for detection of micron-scale inclusions, various optical elastography, especially optical coherence elastography (OCE), techniques have been investigated over the past decade. The challenges of current optical elastography methods include the decrease in elastographic resolution as compared with its parent imaging resolution, the detection sensitivity and accuracy, and the cost of the overall system. Here we report for the first time, we believe, on an elastography technique-crawling wave optical coherence elastography (CRW-OCE)-which significantly lowers the requirements on the imaging speed and opens the path to high-resolution and high-sensitivity OCE at relatively low cost. Methods of crawling wave excitation, data acquisition, and crawling wave tracking are presented.
Journal of Biomedical Optics | 2017
Fernando Zvietcovich; Jannick P. Rolland; Jianing Yao; Panomsak Meemon; Kevin J. Parker
Abstract. We compare five optical coherence elastography techniques able to estimate the shear speed of waves generated by one and two sources of excitation. The first two techniques make use of one piezoelectric actuator in order to produce a continuous shear wave propagation or a tone-burst propagation (TBP) of 400 Hz over a gelatin tissue-mimicking phantom. The remaining techniques utilize a second actuator located on the opposite side of the region of interest in order to create three types of interference patterns: crawling waves, swept crawling waves, and standing waves, depending on the selection of the frequency difference between the two actuators. We evaluated accuracy, contrast to noise ratio, resolution, and acquisition time for each technique during experiments. Numerical simulations were also performed in order to support the experimental findings. Results suggest that in the presence of strong internal reflections, single source methods are more accurate and less variable when compared to the two-actuator methods. In particular, TBP reports the best performance with an accuracy error <4.1%. Finally, the TBP was tested in a fresh chicken tibialis anterior muscle with a localized thermally ablated lesion in order to evaluate its performance in biological tissue.
Optics Express | 2015
Jianing Yao; Jinxin Huang; Panomsak Meemon; Michael Ponting; Jannick P. Rolland
A hybrid confocal-scan swept-source optical coherence tomography metrology system was conceived for simultaneous measurements of the refractive index and thickness profiles of polymeric layered gradient refractive index (GRIN) optics. An uncertainty analysis predicts the metrology capability of the system and guides the selection of an optimum working numerical aperture. Experimental results on both a monolithic and a GRIN layered sheet are demonstrated to be in close agreement with theoretical predictions. Index measurement precision reached 0.0001 and 0.0008 for measuring 2.8 mm and ~300 µm thick layers, respectively. The thicknesses of these layers were simultaneously measured with a precision of 0.28 and 0.17 µm, respectively.
Proceedings of SPIE | 2016
Fernando Zvietcovich; Jianing Yao; Jannick P. Rolland; Kevin J. Parker
Various types of waves are produced when a harmonic force is applied to a semi-infinite half space elastic medium. In particular, surface waves are perturbations with transverse and longitudinal components of displacement that propagate in the boundary region at the surface of the elastic solid. Shear wave speed estimation is the standard for characterizing elastic properties of tissue in elastography; however, the penetration depth of Optical Coherence Tomography (OCT) is typically measured in millimeters constraining the measurement region of interest to be near the surface. Plane harmonic Rayleigh waves propagate in solid-vacuum interfaces while Scholte waves exist in solid-fluid interfaces. Theoretically, for an elastic solid with a Poisson’s ratio close to 0.5, the ratio of the Rayleigh to shear wave speed is 95%, and 84% for the Scholte to shear wave. Our study demonstrates the evidence of Rayleigh waves propagating in the solid-air boundary of tissue-mimicking elastic phantoms. Sinusoidal tone-bursts of 400Hz and 1000 Hz were excited over the phantom by using a piezoelectric actuator. The wave propagation was detected with a phase-sensitive OCT system, and its speed was measured by tracking the most prominent peak of the tone in time and space. Similarly, this same experiment was repeated with a water interface. In order to obtain the shear wave speed in the material, mechanical compression tests were conducted in samples of the same phantom. A 93.9% Rayleigh-shear and 82.4% Scholte-Shear speed ratio were measured during experiments which are in agreement with theoretical results.
Journal of Biomedical Optics | 2015
Jinxin Huang; Jianing Yao; Nick Cirucci; Trevor Ivanov; Jannick P. Rolland
Abstract. Thickness estimation is a common task in optical coherence tomography (OCT). This study discusses and quantifies the intensity noise of three commonly used broadband sources, such as a supercontinuum source, a superluminescent diode (SLD), and a swept source. The performance of the three optical sources was evaluated for a thickness estimation task using both the fast Fourier transform (FFT) and maximum-likelihood (ML) estimators. We find that the source intensity noise has less impact on a thickness estimation task compared to the width of the axial point-spread function (PSF) and the trigger jittering noise of a swept source. Findings further show that the FFT estimator yields biased estimates, which can be as large as 10% of the thickness under test in the worst case. The ML estimator is by construction asymptotically unbiased and displays a 10× improvement in precision for both the supercontinuum and SLD sources. The ML estimator also shows the ability to estimate thickness that is at least 10× thinner compared to the FFT estimator. Finally, findings show that a supercontinuum source combined with the ML estimator enables unbiased nanometer-class thickness estimation with nanometer-scale precision.
Optics Express | 2016
Jianing Yao; Kevin P. Thompson; Bin Ma; Michael Ponting; Jannick P. Rolland
In this paper, we develop the methodology, including the refraction correction, geometrical thickness correction, coordinate transformation, and layer segmentation algorithms, for 3D rendering and metrology of a layered spherical gradient refractive index (S-GRIN) lens based on the imaging data collected by an angular scan optical coherence tomography (OCT) system. The 3D mapping and rendering enables direct 3D visualization and internal defect inspection of the lens. The metrology provides assessment of the surface geometry, the lens thickness, the radii of curvature of the internal layer interfaces, and the misalignment of the internal S-GRIN distribution with respect to the lens surface. The OCT metrology results identify the manufacturing defects, and enable targeted process development for optimizing the manufacturing parameters. The newly fabricated S-GRIN lenses show up to a 7x spherical aberration reduction that allows a significantly increased utilizable effective aperture.
Optifab 2015 | 2015
Jianing Yao; Di Xu; Nan Zhao; Jannick P. Rolland
The recent advances in the optics manufacturing industry to achieve the capability of fabricating rotationally nonsymmetric optical quality surfaces have considerably stimulated the optical designs with freeform components. This opens up new horizons for novel optical systems with larger fields of view and higher performance, or significantly more compact in volume at equal performance compared to conventional systems. A bottleneck to the broad industrial applications of freeform optics remains the lack of a high performance optical metrology tool capable of measuring significant surface departures and slopes of the parts. To address this issue, we have developed a fiber-based swept-source optical coherence tomography (SS-OCT) system for point-cloud freeform metrology, where two-axis galvanometer scanners are leveraged for high-speed lateral scans. We specifically designed a custom all-reflective achromatic pupil relay system to achieve a diffraction-limited scanning configuration. Coupled with a large field-of-view (FOV) telecentric scan lens, the imaging covers 28.9 mm × 28.9 mm FOV with 35 μm lateral resolution and more than 600 μm depth of focus. Freeform metrology is demonstrated for an Alvarez surface of 400 μm surface sag. The high sensitivity of the SS-OCT system allows for capturing the slope variations of the part up to the maximum slope that is 5 degrees in this case. Specific surface reconstruction, rendering and fitting algorithms were developed to evaluate the metrology results and investigate the accuracy and precision of the measurements.
Proceedings of SPIE | 2016
Fernando Zvietcovich; Jianing Yao; Ying-Ju Chu; Panomsak Meemon; Jannick P. Rolland; Kevin J. Parker
Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.