Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianjia Fan is active.

Publication


Featured researches published by Jianjia Fan.


Journal of Biological Chemistry | 2010

ATP-binding Cassette Transporter A1 Mediates the Beneficial Effects of the Liver X Receptor Agonist GW3965 on Object Recognition Memory and Amyloid Burden in Amyloid Precursor Protein/Presenilin 1 Mice

James Donkin; Sophie Stukas; Veronica Hirsch-Reinshagen; Dhananjay Namjoshi; Anna Wilkinson; Sharon May; Jeniffer Chan; Jianjia Fan; Jon L. Collins; Cheryl L. Wellington

The cholesterol transpoter ATP-binding cassette transporter A1 (ABCA1) moves lipids onto apolipoproteins including apolipoprotein E (apoE), which is the major cholesterol carrier in the brain and an established genetic risk factor for late-onset Alzheimer disease (AD). In amyloid mouse models of AD, ABCA1 deficiency exacerbates amyloidogenesis, whereas ABCA1 overexpression ameliorates amyloid load, suggesting a role for ABCA1 in Aβ metabolism. Agonists of liver X receptors (LXR), including GW3965, induce transcription of several genes including ABCA1 and apoE, and reduce Aβ levels and improve cognition in AD mice. However, the specific role of ABCA1 in mediating beneficial responses to LXR agonists in AD mice is unknown. We evaluated behavioral and neuropathogical outcomes in GW3965-treated female APP/PS1 mice with and without ABCA1. Treatment of APP/PS1 mice with GW3965 increased ABCA1 and apoE protein levels. ABCA1 was required to observe significantly elevated apoE levels in brain tissue and cerebrospinal fluid upon therapeutic (33 mg/kg/day) GW3965 treatment. At 33 mg/kg/day, GW3965 was also associated with a trend toward redistribution of Aβ to the carbonate-soluble pool independent of ABCA1. APP/PS1 mice treated with either 2.5 or 33 mg/kg/day of GW3965 showed a clear trend toward reduced amyloid burden in hippocampus and whole brain, whereas APP/PS1-treated mice lacking ABCA1 failed to display reduced amyloid load in the whole brain and showed trends toward increased hippocampal amyloid. Treatment of APP/PS1 mice with either dose of GW3965 completely restored novel object recognition memory to wild-type levels, which required ABCA1. These results suggest that ABCA1 contributes to several beneficial effects of the LXR agonist GW3965 in APP/PS1 mice.


The Journal of Neuroscience | 2010

Cholesterol Defect Is Marked across Multiple Rodent Models of Huntington's Disease and Is Manifest in Astrocytes

Marta Valenza; Valerio Leoni; Joanna M. Karasinska; Lara Petricca; Jianjia Fan; Jeffrey B. Carroll; Mahmoud A. Pouladi; Elisa Fossale; Huu Phuc Nguyen; Olaf Riess; Marcy E. MacDonald; Cheryl L. Wellington; Stefano DiDonato; Michael R. Hayden

Brain cholesterol, which is synthesized locally, is a major component of myelin and cell membranes and participates in neuronal functions, such as membrane trafficking, signal transduction, neurotransmitter release, and synaptogenesis. Here we show that brain cholesterol biosynthesis is reduced in multiple transgenic and knock-in Huntingtons disease (HD) rodent models, arguably dependent on deficits in mutant astrocytes. Mice carrying a progressively increased number of CAG repeats show a more evident reduction in cholesterol biosynthesis. In postnatal life, the cholesterol-dependent activities of neurons mainly rely on the transport of cholesterol from astrocytes on ApoE-containing particles. Our data show that mRNA levels of cholesterol biosynthesis and efflux genes are severely reduced in primary HD astrocytes, along with impaired cellular production and secretion of ApoE. Consistently, in CSF of HD mice, ApoE is mostly associated with smaller lipoproteins, indicating reduced cholesterol transport on ApoE-containing lipoproteins circulating in the HD brain. These findings indicate that cholesterol defect is robustly marked in HD animals, implying that strategies aimed at selectively modulating brain cholesterol metabolism might be of therapeutic significance.


The Journal of Neuroscience | 2009

Specific Loss of Brain ABCA1 Increases Brain Cholesterol Uptake and Influences Neuronal Structure and Function

Joanna M. Karasinska; Franz Rinninger; Dieter Lütjohann; Piers Ruddle; Sonia Franciosi; Janine K. Kruit; Roshni R. Singaraja; Veronica Hirsch-Reinshagen; Jianjia Fan; Liam R. Brunham; Nagat Bissada; Rajasekhar Ramakrishnan; Cheryl L. Wellington; John S. Parks; Michael R. Hayden

The expression of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) in the brain and its role in the lipidation of apolipoproteins indicate that ABCA1 may play a critical role in brain cholesterol metabolism. To investigate the role of ABCA1 in brain cholesterol homeostasis and trafficking, we characterized mice that specifically lacked ABCA1 in the CNS, generated using the Cre/loxP recombination system. These mice showed reduced plasma high-density lipoprotein (HDL) cholesterol levels associated with decreased brain cholesterol content and enhanced brain uptake of esterified cholesterol from plasma HDL. Increased levels of HDL receptor SR-BI in brain capillaries and apolipoprotein A-I in brain and CSF of mutant mice were evident. Cholesterol homeostasis changes were mirrored by disturbances in motor activity and sensorimotor function. Changes in synaptic ultrastructure including reduced synapse and synaptic vesicle numbers were observed. These data show that ABCA1 is a key regulator of brain cholesterol metabolism and that disturbances in cholesterol transport in the CNS are associated with structural and functional deficits in neurons. Moreover, our findings also demonstrate that specific changes in brain cholesterol metabolism can lead to alterations in cholesterol uptake from plasma to brain.


Biofactors | 2009

Greasing the wheels of Aβ clearance in Alzheimer's Disease: The role of lipids and apolipoprotein E

Jianjia Fan; James Donkin; Cheryl L. Wellington

Although apolipoprotein E (apoE) is the most common genetic risk factor for Alzheimers Disease (AD), how apoE participates in AD pathogenesis remains incompletely understood. ApoE is also the major carrier of lipids in the brain. Here, we review studies showing that the lipidation status of apoE influences the metabolism of Aβ peptides, which accumulate as amyloid deposits in the neural parenchyma and cerebrovasculature. One effect of apoE is to inhibit the transport of Aβ across the blood‐brain‐barrier (BBB), particularly when apoE is lipidated. A second effect is to facilitate the proteolytic degradation of Aβ by neprilysin and insulin degrading enzyme (IDE), which is enhanced when apoE is lipidated. We also describe how apoE becomes lipidated and how this impacts Aβ metabolism. Specifically, genetic loss of the cholesterol transporter ABCA1 impairs apoE lipidation and promotes amyloid deposition in AD mouse models. ABCA1 catalyses the ATP‐dependent transport of cholesterol and phospholipids from the plasma membrane to lipid‐free apolipoproteins including apoE. Conversely, selective overexpression of ABCA1 increases apoE lipidation in the central nervous system (CNS) and eliminates the formation of amyloid plaques in vivo. Deficiency of Liver‐X‐Receptors (LXRs), transcription factors that stimulate ABCA1 and apoE expression, exacerbates AD pathogenesis in vivo, whereas treatment of AD mice with synthetic LXR agonists reduces amyloid load and improves cognitive performance. These studies provide new insights into the mechanisms by which apoE affects Aβ metabolism, and offer opportunities to develop novel therapeutic approaches to reduce the leading cause of dementia in the elderly.


Molecular Neurodegeneration | 2014

Merging pathology with biomechanics using CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration): a novel, surgery-free model of traumatic brain injury

Dhananjay Namjoshi; Wai Hang Cheng; Kurt A. McInnes; Kris M. Martens; Michael Carr; Anna Wilkinson; Jianjia Fan; Jérôme Robert; Arooj Hayat; Peter A. Cripton; Cheryl L. Wellington

BackgroundTraumatic brain injury (TBI) is a major health care concern that currently lacks any effective treatment. Despite promising outcomes from many preclinical studies, clinical evaluations have failed to identify effective pharmacological therapies, suggesting that the translational potential of preclinical models may require improvement. Rodents continue to be the most widely used species for preclinical TBI research. As most human TBIs result from impact to an intact skull, closed head injury (CHI) models are highly relevant, however, traditional CHI models suffer from extensive experimental variability that may be due to poor control over biomechanical inputs. Here we describe a novel CHI model called CHIMERA (Closed-Head Impact Model of Engineered Rotational Acceleration) that fully integrates biomechanical, behavioral, and neuropathological analyses. CHIMERA is distinct from existing neurotrauma model systems in that it uses a completely non-surgical procedure to precisely deliver impacts of prescribed dynamic characteristics to a closed skull while enabling kinematic analysis of unconstrained head movement. In this study, we characterized head kinematics as well as functional, neuropathological, and biochemical outcomes up to 14d following repeated TBI (rTBI) in adult C57BL/6 mice using CHIMERA.ResultsHead kinematic analysis showed excellent repeatability over two closed head impacts separated at 24h. Injured mice showed significantly prolonged loss of righting reflex and displayed neurological, motor, and cognitive deficits along with anxiety-like behavior. Repeated TBI led to diffuse axonal injury with extensive microgliosis in white matter from 2-14d post-rTBI. Injured mouse brains also showed significantly increased levels of TNF-α and IL-1β and increased endogenous tau phosphorylation.ConclusionsRepeated TBI using CHIMERA mimics many of the functional and pathological characteristics of human TBI with a reliable biomechanical response of the head. This makes CHIMERA well suited to investigate the pathophysiology of TBI and for drug development programs.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Overexpression of Human ABCG1 Does Not Affect Atherosclerosis in Fat-Fed ApoE-Deficient Mice

Braydon L. Burgess; Kathryn E. Naus; Jeniffer Chan; Veronica Hirsch-Reinshagen; Gavin Tansley; Lisa Matzke; Benny Chan; Anna Wilkinson; Jianjia Fan; James Donkin; Danielle Balik; Tracie Tanaka; George Ou; Roger A. Dyer; Sheila M. Innis; Bruce M. McManus; Dieter Lütjohann; Cheryl L. Wellington

Objective—The purpose of this study was to evaluate the effects of whole body overexpression of human ABCG1 on atherosclerosis in apoE−/− mice. Methods and Results—We generated BAC transgenic mice in which human ABCG1 is expressed from endogenous regulatory signals, leading to a 3- to 7-fold increase in ABCG1 protein across various tissues. Although the ABCG1 BAC transgene rescued lung lipid accumulation in ABCG1−/− mice, it did not affect plasma lipid levels, macrophage cholesterol efflux to HDL, atherosclerotic lesion area in apoE−/− mice, or levels of tissue cholesterol, cholesterol ester, phospholipids, or triglycerides. Subtle changes in sterol biosynthetic intermediate levels were observed in liver, with chow-fed ABCG1 BAC Tg mice showing a nonsignificant trend toward decreased levels of lathosterol, lanosterol, and desmosterol, and fat-fed mice exhibiting significantly elevated levels of each intermediate. These changes were insufficient to alter ABCA1 expression in liver. Conclusions—Transgenic human ABCG1 does not influence atherosclerosis in apoE−/− mice but may participate in the regulation of tissue cholesterol biosynthesis.


PLOS ONE | 2013

The Liver X Receptor Agonist GW3965 Improves Recovery from Mild Repetitive Traumatic Brain Injury in Mice Partly through Apolipoprotein E

Dhananjay Namjoshi; Georgina Martin; James Donkin; Anna Wilkinson; Sophie Stukas; Jianjia Fan; Michael Carr; Sepideh Tabarestani; Kelli Wuerth; Robert E. W. Hancock; Cheryl L. Wellington

Traumatic brain injury (TBI) increases Alzheimer’s disease (AD) risk and leads to the deposition of neurofibrillary tangles and amyloid deposits similar to those found in AD. Agonists of Liver X receptors (LXRs), which regulate the expression of many genes involved in lipid homeostasis and inflammation, improve cognition and reduce neuropathology in AD mice. One pathway by which LXR agonists exert their beneficial effects is through ATP-binding cassette transporter A1 (ABCA1)-mediated lipid transport onto apolipoprotein E (apoE). To test the therapeutic utility of this pathway for TBI, we subjected male wild-type (WT) and apoE−/− mice to mild repetitive traumatic brain injury (mrTBI) followed by treatment with vehicle or the LXR agonist GW3965 at 15 mg/kg/day. GW3965 treatment restored impaired novel object recognition memory in WT but not apoE−/− mice. GW3965 did not significantly enhance the spontaneous recovery of motor deficits observed in all groups. Total soluble Aβ40 and Aβ42 levels were significantly elevated in WT and apoE−/− mice after injury, a response that was suppressed by GW3965 in both genotypes. WT mice showed mild but significant axonal damage at 2 d post-mrTBI, which was suppressed by GW3965. In contrast, apoE−/− mice showed severe axonal damage from 2 to 14 d after mrTBI that was unresponsive to GW3965. Because our mrTBI model does not produce significant inflammation, the beneficial effects of GW3965 we observed are unlikely to be related to reduced inflammation. Rather, our results suggest that both apoE-dependent and apoE-independent pathways contribute to the ability of GW3965 to promote recovery from mrTBI.


Journal of the American Heart Association | 2014

Intravenously Injected Human Apolipoprotein A‐I Rapidly Enters the Central Nervous System via the Choroid Plexus

Sophie Stukas; Jérôme Robert; Michael Lee; Iva Kulic; Michael Carr; Katherine Tourigny; Jianjia Fan; Dhananjay Namjoshi; Kalistyne Lemke; Nicole DeValle; Jeniffer Chan; Tammy Wilson; Anna Wilkinson; Rafi Chapanian; Jayachandran N. Kizhakkedathu; John R. Cirrito; Michael N. Oda; Cheryl L. Wellington

Background Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high‐density lipoproteins but that contain apolipoprotein (apo) E rather than apoA‐I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA‐I; however, apoA‐I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA‐I enters the central nervous system is unknown. Methods and Results Steady‐state levels of murine apoA‐I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 μg/mL, respectively, whereas brain tissue apoA‐I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA‐I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose‐dependent manner in the brain. Recombinant, fluorescently tagged human apoA‐I accumulates in the brain for 2 hours, after which it is eliminated with a half‐life of 10.3 hours. In vitro, human apoA‐I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. Conclusions Following intravenous injection, recombinant human apoA‐I rapidly localizes predominantly to the choroid plexus. Because apoA‐I mRNA is undetectable in murine brain, our results suggest that plasma apoA‐I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood–cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood–brain barrier may also contribute to a lesser extent.


Neurobiology of Disease | 2013

ABCA1 influences neuroinflammation and neuronal death

Joanna M. Karasinska; Willeke de Haan; Sonia Franciosi; Piers Ruddle; Jianjia Fan; Janine K. Kruit; Sophie Stukas; Dieter Lütjohann; David H. Gutmann; Cheryl L. Wellington; Michael R. Hayden

ATP-binding cassette transporter A1 (ABCA1) mediates cellular cholesterol efflux in the brain and influences whole brain cholesterol homeostasis. Activation of liver X receptors (LXRs), transcription factors that increase the expression of cholesterol transport genes including ABCA1, reduces neuroinflammation and pathology in neurodegenerative animal models suggesting that in addition to its involvement in cholesterol transport, ABCA1 may play a role in modulating the inflammatory response in the brain. We investigated the cell-type specific role of ABCA1 in neuroinflammation in vivo using mice specifically lacking brain ABCA1 (ABCA1(-B/-B)) as well as mice lacking neuronal (ABCA1(-N/-N)) and astrocytic (ABCA1(-Ast/-Ast)) ABCA1. ABCA1(-B/-B) mice exhibit cortical astrogliosis, increased inflammatory gene expression as well as activation of mitogen-activated protein kinases (MAPKs) following acute lipopolysaccharide (LPS) administration. Microglia cultured from ABCA1(-B/-B) mice exhibit augmented LPS-induced secretion of tumor necrosis factor α (TNFα) and decreased phagocytic activity, indicating an increase in a pro-inflammatory response. ABCA1(-N/-N) mice develop astrogliosis but show no change in inflammatory gene expression. Intriguingly, ABCA1(-Ast/-Ast) mice show neither astrogliosis nor elevated expression of inflammatory markers. Cortical apolipoprotein E (apoE) levels are reduced in ABCA1(-Ast/-Ast) but not in ABCA1(-N/-N) mice, providing in vivo evidence for the specific role of astrocyte ABCA1 in regulating brain apoE levels. Interestingly, cortical neuronal death is increased in 17month-old ABCA1(-B/-B) mice but not in ABCA1(-N/-N) or ABCA1(-Ast/-Ast) mice. Our findings suggest that coordinated ABCA1 activity across neurons and glial cells influences neuroinflammation and neurodegeneration.


Biochimica et Biophysica Acta | 2016

Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice.

Jérôme Robert; Sophie Stukas; Emily B. Button; Wai Hang Cheng; Michael Lee; Jianjia Fan; Anna Wilkinson; Iva Kulic; Samuel D. Wright; Cheryl L. Wellington

Many lines of evidence suggest a protective role for high-density lipoprotein (HDL) and its major apolipoprotein (apo)A-I in Alzheimers Disease (AD). HDL/apoA-I particles are produced by the liver and intestine and, in addition to removing excess cholesterol from the body, are increasingly recognized to have vasoprotective functions. Here we tested the ability of reconstituted HDL (rHDL) consisting of human apoA-I reconstituted with soy phosphatidylcholine for its ability to lower amyloid beta (Aβ) levels in symptomatic APP/PS1 mice, a well-characterized preclinical model of amyloidosis. Animals were treated intravenously either with four weekly doses (chronic study) or a single dose of 60mg/kg of rHDL (acute study). The major finding of our acute study is that soluble brain Aβ40 and Aβ42 levels were significantly reduced within 24h of a single dose of rHDL. By contrast, no changes were observed in our chronic study with respect to soluble or deposited Aβ levels in animals assessed 7days after the final weekly dose of rHDL, suggesting that beneficial effects diminish as rHDL is cleared from the body. Further, rHDL-treated animals showed no change in amyloid burden, cerebrospinal fluid (CSF) Aβ levels, neuroinflammation, or endothelial activation in the chronic study, suggesting that the pathology-modifying effects of rHDL may indeed be acute and may be specific to the soluble Aβ pool. That systemic administration of rHDL can acutely modify brain Aβ levels provides support for further investigation of the therapeutic potential of apoA-I-based agents for AD. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.

Collaboration


Dive into the Jianjia Fan's collaboration.

Top Co-Authors

Avatar

Cheryl L. Wellington

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Anna Wilkinson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Sophie Stukas

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

James Donkin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Dhananjay Namjoshi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iva Kulic

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jeniffer Chan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael Carr

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge