Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianjiang Feng is active.

Publication


Featured researches published by Jianjiang Feng.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2009

Latent Palmprint Matching

Anil K. Jain; Jianjiang Feng

The evidential value of palmprints in forensics is clear as about 30% of the latents recovered from crime scenes are from palms. While palmprint-based personal authentication systems have been developed, they mostly deal with low resolution (about 100 ppi) palmprints and only perform full-to-full matching. We propose a latent-to-full palmprint matching system that is needed in forensics. Our system deals with palmprints captured at 500 ppi and uses minutiae as features. Latent palmprint matching is a challenging problem because latents lifted at crime scenes are of poor quality, cover small area of palms and have complex background. Other difficulties include the presence of many creases and a large number of minutiae in palmprints. A robust algorithm to estimate ridge direction and frequency in palmprints is developed. This facilitates minutiae extraction even in poor quality palmprints. A fixed-length minutia descriptor, MinutiaCode, is utilized to capture distinctive information around each minutia and an alignment-based matching algorithm is used to match palmprints. Two sets of partial palmprints (150 live-scan partial palmprints and 100 latents) are matched to a background database of 10,200 full palmprints to test the proposed system. Rank-1 recognition rates of 78.7% and 69%, respectively, were achieved for live-scan palmprints and latents.


Pattern Recognition | 2008

Combining minutiae descriptors for fingerprint matching

Jianjiang Feng

A novel minutiae-based fingerprint matching algorithm is proposed. A minutiae matching algorithm has to solve two problems: correspondence and similarity computation. For the correspondence problem, we assign each minutia two descriptors: texture-based and minutiae-based descriptors, and use an alignment-based greedy matching algorithm to establish the correspondences between minutiae. For the similarity computation, we extract a 17-D feature vector from the matching result, and convert the feature vector into a matching score using support vector classifier. The proposed algorithm is tested on FVC2002 databases and compared to all participators in FVC2002. According to equal error rate, the proposed algorithm ranks 1st on DB3, the most difficult database in FVC2002, and on the average ranks 2nd on all 4 databases.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011

Latent Fingerprint Matching

Anil K. Jain; Jianjiang Feng

Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011

Fingerprint Reconstruction: From Minutiae to Phase

Jianjiang Feng; Anil K. Jain

Fingerprint matching systems generally use four types of representation schemes: grayscale image, phase image, skeleton image, and minutiae, among which minutiae-based representation is the most widely adopted one. The compactness of minutiae representation has created an impression that the minutiae template does not contain sufficient information to allow the reconstruction of the original grayscale fingerprint image. This belief has now been shown to be false; several algorithms have been proposed that can reconstruct fingerprint images from minutiae templates. These techniques try to either reconstruct the skeleton image, which is then converted into the grayscale image, or reconstruct the grayscale image directly from the minutiae template. However, they have a common drawback: Many spurious minutiae not included in the original minutiae template are generated in the reconstructed image. Moreover, some of these reconstruction techniques can only generate a partial fingerprint. In this paper, a novel fingerprint reconstruction algorithm is proposed to reconstruct the phase image, which is then converted into the grayscale image. The proposed reconstruction algorithm not only gives the whole fingerprint, but the reconstructed fingerprint contains very few spurious minutiae. Specifically, a fingerprint image is represented as a phase image which consists of the continuous phase and the spiral phase (which corresponds to minutiae). An algorithm is proposed to reconstruct the continuous phase from minutiae. The proposed reconstruction algorithm has been evaluated with respect to the success rates of type-I attack (match the reconstructed fingerprint against the original fingerprint) and type-II attack (match the reconstructed fingerprint against different impressions of the original fingerprint) using a commercial fingerprint recognition system. Given the reconstructed image from our algorithm, we show that both types of attacks can be successfully launched against a fingerprint recognition system.


IEEE Computer | 2010

Fingerprint Matching

Anil K. Jain; Jianjiang Feng; Karthik Nandakumar

Fingerprint matching has been successfully used by law enforcement for more than a century. The technology is now finding many other applications such as identity management and access control. The authors describe an automated fingerprint recognition system and identify key challenges and research opportunities in the field.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2012

Altered Fingerprints: Analysis and Detection

Soweon Yoon; Jianjiang Feng; Anil K. Jain

The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem.


Pattern Recognition | 2006

Fingerprint matching using ridges

Jianjiang Feng; Zhengyu Ouyang; Anni Cai

Traditionally, fingerprint matching is minutia-based, which establishes the minutiae correspondences between two fingerprints. In this paper, a novel fingerprint matching algorithm is presented, which establishes both the ridge correspondences and the minutia correspondences between two fingerprints. First N initial substructure (including a minutia and adjacent ridges) pairs are found by a novel alignment method. Based on each of these substructure pairs, ridge matching is performed by incrementally matching ridges and minutiae, and then a matching score is computed. The maximum one of the N scores is used as the final matching score of two fingerprints. Preliminary results on FVC2002 databases show that ridge matching approach performs comparably with the minutia-based one.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2013

Orientation Field Estimation for Latent Fingerprint Enhancement

Jianjiang Feng; Jie Zhou; Anil K. Jain

Identifying latent fingerprints is of vital importance for law enforcement agencies to apprehend criminals and terrorists. Compared to live-scan and inked fingerprints, the image quality of latent fingerprints is much lower, with complex image background, unclear ridge structure, and even overlapping patterns. A robust orientation field estimation algorithm is indispensable for enhancing and recognizing poor quality latents. However, conventional orientation field estimation algorithms, which can satisfactorily process most live-scan and inked fingerprints, do not provide acceptable results for most latents. We believe that a major limitation of conventional algorithms is that they do not utilize prior knowledge of the ridge structure in fingerprints. Inspired by spelling correction techniques in natural language processing, we propose a novel fingerprint orientation field estimation algorithm based on prior knowledge of fingerprint structure. We represent prior knowledge of fingerprints using a dictionary of reference orientation patches. which is constructed using a set of true orientation fields, and the compatibility constraint between neighboring orientation patches. Orientation field estimation for latents is posed as an energy minimization problem, which is solved by loopy belief propagation. Experimental results on the challenging NIST SD27 latent fingerprint database and an overlapped latent fingerprint database demonstrate the advantages of the proposed orientation field estimation algorithm over conventional algorithms.


computer vision and pattern recognition | 2014

Smooth Representation Clustering

Han Hu; Zhouchen Lin; Jianjiang Feng; Jie Zhou

Subspace clustering is a powerful technology for clustering data according to the underlying subspaces. Representation based methods are the most popular subspace clustering approach in recent years. In this paper, we analyze the grouping effect of representation based methods in depth. In particular, we introduce the enforced grouping effect conditions, which greatly facilitate the analysis of grouping effect. We further find that grouping effect is important for subspace clustering, which should be explicitly enforced in the data self-representation model, rather than implicitly implied by the model as in some prior work. Based on our analysis, we propose the SMooth Representation (SMR) model. We also propose a new affinity measure based on the grouping effect, which proves to be much more effective than the commonly used one. As a result, our SMR significantly outperforms the state-of-the-art ones on benchmark datasets.


IEEE Transactions on Information Forensics and Security | 2013

Latent Fingerprint Matching Using Descriptor-Based Hough Transform

Alessandra A. Paulino; Jianjiang Feng; Anil K. Jain

Identifying suspects based on impressions of fingers lifted from crime scenes (latent prints) is a routine procedure that is extremely important to forensics and law enforcement agencies. Latents are partial fingerprints that are usually smudgy, with small area and containing large distortion. Due to these characteristics, latents have a significantly smaller number of minutiae points compared to full (rolled or plain) fingerprints. The small number of minutiae and the noise characteristic of latents make it extremely difficult to automatically match latents to their mated full prints that are stored in law enforcement databases. Although a number of algorithms for matching full-to-full fingerprints have been published in the literature, they do not perform well on the latent-to-full matching problem. Further, they often rely on features that are not easy to extract from poor quality latents. In this paper, we propose a new fingerprint matching algorithm which is especially designed for matching latents. The proposed algorithm uses a robust alignment algorithm (descriptor-based Hough transform) to align fingerprints and measures similarity between fingerprints by considering both minutiae and orientation field information. To be consistent with the common practice in latent matching (i.e., only minutiae are marked by latent examiners), the orientation field is reconstructed from minutiae. Since the proposed algorithm relies only on manually marked minutiae, it can be easily used in law enforcement applications. Experimental results on two different latent databases (NIST SD27 and WVU latent databases) show that the proposed algorithm outperforms two well optimized commercial fingerprint matchers. Further, a fusion of the proposed algorithm and commercial fingerprint matchers leads to improved matching accuracy.

Collaboration


Dive into the Jianjiang Feng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil K. Jain

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Anni Cai

Beijing University of Posts and Telecommunications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Hu

Tsinghua University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge