Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianjun Hao is active.

Publication


Featured researches published by Jianjun Hao.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1

Karthikeyan Narayanan; Rampalli Srinivas; Jianjun Hao; Bruce Quinn; Anne George

Cells of the craniofacial skeleton are derived from a common mesenchymal progenitor. The regulatory factors that control their differentiation into various cell lineages are unknown. To investigate the biological function of dentin matrix protein 1 (DMP1), an extracellular matrix gene involved in calcified tissue formation, stable transgenic cell lines and adenovirally infected cells overexpressing DMP1 were generated. The findings in this paper demonstrate that overexpression of DMP1 in pluripotent and mesenchyme-derived cells such as C3H10T1/2, MC3T3-E1, and RPC-C2A can induce these cells to differentiate and form functional odontoblast-like cells. Functional differentiation of odontoblasts requires unique sets of genes being turned on and off in a growth- and differentiation-specific manner. The genes studied include transcription factors like core binding factor 1 (Cbfa1), bone morphogenetic protein 2 (BMP2), and BMP4; early markers for extracellular matrix deposition like alkaline phosphatase (ALP), osteopontin, osteonectin, and osteocalcin; and late markers like DMP2 and dentin sialoprotein (DSP) that are expressed by terminally differentiated odontoblasts and are responsible for the formation of tissue-specific dentin matrix. However, this differentiation pathway was limited to mesenchyme-derived cells only. Other cell lines tested by the adenoviral expression system failed to express odontoblast-phenotypic specific genes. An in vitro mineralized nodule formation assay demonstrated that overexpressed cells could differentiate and form a mineralized matrix. Furthermore, we also demonstrate that phosphorylation of Cbfa1 (osteoblast-specific transcription factor) was not required for the expression of odontoblast-specific genes, indicating the involvement of other unidentified odontoblast-specific transcription factors or coactivators. Cell lines that differentiate into odontoblast-like cells are useful tools for studying the mechanism involved in the terminal differentiation process of these postmitotic cells.


Journal of Endodontics | 2008

In Vivo Generation of Dental Pulp-like Tissue by Using Dental Pulp Stem Cells, a Collagen Scaffold, and Dentin Matrix Protein 1 after Subcutaneous Transplantation in Mice

Rebecca S. Prescott; Rajaa Alsanea; Mohamed I. Fayad; Bradford R. Johnson; Christopher S. Wenckus; Jianjun Hao; Asha S. John; Anne George

The presence of a perforation is known to significantly compromise the outcome of endodontic treatment. One potential use of regenerative endodontic therapy might be the repair of root canal perforations. In addition to nutrients and systemic in situ interactions, the 3 main components believed to be essential for tissue regeneration are stem cells, scaffold, and growth factors. This study investigated the role of each component of the tissue engineering triad in the organization and differentiation of dental pulp stem cells (DPSCs) in a simulated furcal perforation site by using a mouse model. Collagen served as the scaffold, and dentin matrix protein 1 (DMP1) was the growth factor. Materials were placed in simulated perforation sites in dentin slices. Mineral trioxide aggregate was the control repair material. At 6 weeks, the animals were killed, and the perforation sites were evaluated by light microscopy and histologic staining. Organization of newly derived pulp tissue was seen in the group containing the triad of DPSCs, a collagen scaffold, and DMP1. The other 4 groups did not demonstrate any apparent tissue organization. Under the conditions of the present study, it might be concluded that the triad of DPSCs, a collagen scaffold, and DMP1 can induce an organized matrix formation similar to that of pulpal tissue, which might lead to hard tissue formation.


Journal of Biological Chemistry | 2007

Matrix Macromolecules in Hard Tissues Control the Nucleation and Hierarchical Assembly of Hydroxyapatite

Sivakumar Gajjeraman; Karthikeyan Narayanan; Jianjun Hao; Chunlin Qin; Anne George

Biogenic minerals found in teeth and bones are synthesized by precise cell-mediated mechanisms. They have superior mechanical properties due to their complex architecture. Control over biomineral properties can be accomplished by regulation of particle size, shape, crystal orientation, and polymorphic structure. In many organisms, biogenic minerals are assembled using a transient amorphous mineral phase. Here we report that organic constituents of bones and teeth, namely type I collagen and dentin matrix protein 1 (DMP1), are effective crystal modulators. They control nucleation of calcium phosphate polymorphs and the assembly of hierarchically ordered crystalline composite material. Both full-length recombinant DMP1 and post-translationally modified native DMP1 were able to nucleate hydroxyapatite (HAP) in the presence of type I collagen. However, the N-terminal domain of DMP1 (amino acid residues 1–334) inhibited HAP formation and stabilized the amorphous phase that was formed. During the nucleation and growth process, the initially formed metastable amorphous calcium phosphate phase transformed into thermodynamically stable crystalline hydroxyapatite in a precisely controlled manner. The organic matrix-mediated controlled transformation of amorphous calcium phosphate into crystalline HAP was confirmed by x-ray diffraction, selected area electron diffraction pattern, Raman spectroscopy, and elemental analysis. The mechanical properties of the protein-mediated HAP crystals were also determined as they reflect the material structure. Such understanding of biomolecule controls on biomineralization promises new insights into the controlled synthesis of crystalline structures.


PLOS Genetics | 2012

Inactivation of a Novel FGF23 Regulator, FAM20C, Leads to Hypophosphatemic Rickets in Mice

Xiaofang Wang; Suzhen Wang; Changcheng Li; Tian Gao; Ying Liu; Afsaneh Rangiani; Yao Sun; Jianjun Hao; Anne George; Yongbo Lu; Jay Groppe; Baozhi Yuan; Jian Q. Feng; Chunlin Qin

Family with sequence similarity 20,-member C (FAM20C) is highly expressed in the mineralized tissues of mammals. Genetic studies showed that the loss-of-function mutations in FAM20C were associated with human lethal osteosclerotic bone dysplasia (Raine Syndrome), implying an inhibitory role of this molecule in bone formation. However, in vitro gain- and loss-of-function studies suggested that FAM20C promotes the differentiation and mineralization of mouse mesenchymal cells and odontoblasts. Recently, we generated Fam20c conditional knockout (cKO) mice in which Fam20c was globally inactivated (by crossbreeding with Sox2-Cre mice) or inactivated specifically in the mineralized tissues (by crossbreeding with 3.6 kb Col 1a1-Cre mice). Fam20c transgenic mice were also generated and crossbred with Fam20c cKO mice to introduce the transgene in the knockout background. In vitro gain- and loss-of-function were examined by adding recombinant FAM20C to MC3T3-E1 cells and by lentiviral shRNA–mediated knockdown of FAM20C in human and mouse osteogenic cell lines. Surprisingly, both the global and mineralized tissue-specific cKO mice developed hypophosphatemic rickets (but not osteosclerosis), along with a significant downregulation of osteoblast differentiation markers and a dramatic elevation of fibroblast growth factor 23 (FGF23) in the serum and bone. The mice expressing the Fam20c transgene in the wild-type background showed no abnormalities, while the expression of the Fam20c transgene fully rescued the skeletal defects in the cKO mice. Recombinant FAM20C promoted the differentiation and mineralization of MC3T3-E1 cells. Knockdown of FAM20C led to a remarkable downregulation of DMP1, along with a significant upregulation of FGF23 in both human and mouse osteogenic cell lines. These results indicate that FAM20C is a bone formation “promoter” but not an “inhibitor” in mouse osteogenesis. We conclude that FAM20C may regulate osteogenesis through its direct role in facilitating osteoblast differentiation and its systemic regulation of phosphate homeostasis via the mediation of FGF23.


Journal of Biological Chemistry | 2006

Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation

Karthikeyan Narayanan; Sivakumar Gajjeraman; Jianjun Hao; Anne George

Dentin mineralization requires transcriptional mechanisms to induce a cascade of gene expression for progressive development of the odontoblast phenotype. During cytodifferentiation of odontoblasts there is a constant change of actively transcribed genes. Thus, tissue-specific matrix genes that are silenced in early differentiation are expressed during the terminal differentiation process. Dentin sialophosphoprotein (DSPP) is an extracellular matrix, prototypical dentin, and a bone-specific gene, however, the molecular mechanisms by which it is temporally and spatially regulated are not clear. In this report, we demonstrate that dentin matrix protein 1 (DMP1), which is localized in the nucleus during early differentiation of odontoblasts, is able to bind specifically with the DSPP promoter and activate its transcription. We have identified the specific promoter sequence that binds specifically to the carboxyl end of DMP1. The DNA binding domain in DMP1 resides between amino acids 420 and 489. A chromatin immunoprecipitation assay confirmed the in vivo association of DMP1 with the DSPP promoter. Interactions between DMP1 and DSPP promoter thus provide the foundation to understand how DMP1 regulates the expression of the DSPP gene.


Journal of Biological Chemistry | 2007

Dentin Matrix Protein 4, a Novel Secretory Calcium-binding Protein That Modulates Odontoblast Differentiation

Jianjun Hao; Karthikeyan Narayanan; Tanvi Muni; Anne George

Formation of calcified tissues is a well regulated process. In dentin, the odontoblasts synthesize several biomolecules that function as nucleators or inhibitors of mineralization. To identify genes that are odontoblast-specific, a subtractive hybridization technique was employed that resulted in the identification of a previously undescribed novel gene synthesized by the odontoblasts. Based on the nomenclature in our laboratory, this gene has been named dentin matrix protein 4 (DMP4). The protein encoded by mouse DMP4 cDNA contained 579 amino acids, including a 26-amino acid signal peptide. Analysis of the protein sequence demonstrated the presence of a Greek key calcium-binding domain and one conserved domain of unknown function in all the species examined thus far. Calcium binding property was confirmed by 45Ca binding assays and the corresponding change in conformation by far-ultraviolet circular dichroism. Northern analysis demonstrated high expression levels of a single 3-kb mRNA transcript in tooth, whereas low expression levels were detected in other tissues. In situ hybridization analysis showed high expression levels of DMP4 in odontoblasts and low levels in osteoblasts and ameloblasts during tooth development. Gain and loss of function experiments demonstrated that DMP4 had the potential to differentiate mesenchymal precursor cells into functional odontoblast-like cells.


Journal of Histochemistry and Cytochemistry | 2009

Temporal and spatial localization of the dentin matrix proteins during dentin biomineralization.

Jianjun Hao; Anne George

Formation of bone and dentin are classical examples of matrix-mediated mineralization. The mineral phase is essentially the same in these two tissues and primarily consists of a carbonated hydroxyapatite, but the difference lies in the crystal size and shape. There are three components that are necessary for proper mineralization, namely the proper synthesis and secretion of the non-collagenous proteins (NCPs), self-assembly of the collagenous matrix, and delivery of calcium and phosphate ions to the extracellular matrix. Three major NCPs present in the dentin matrix are dentin matrix protein 1 (DMP1), dentin phosphophorin (DPP), and dentin sialoprotein (DSP). In this study, we show the temporal and spatial localization of these NCPs and correlate their expression with the presence of collagenous matrix and calcified deposits in developing mouse incisors and molars. DMP1, an acidic protein, is present predominantly at the mineralization front and in the nucleus of undifferentiated preodontoblast cells. DPP, the major NCP, is present in large amounts at the mineralization front and might function to regulate the size of the growing hydroxyapatite crystals. For the first time, we report the localization of DPP in the nucleus of preodontoblast cells, suggesting a signaling function during the odontoblast differentiation process. DSP is localized predominantly in the dentinal tubules at the site of peritubular dentin, which is highly mineralized in nature. Thus, the precise localization of DMP1, DPP, and DSP in the dentin tissue suggests that a concerted effort between several NCPs is necessary for dentin formation.


Journal of Histochemistry and Cytochemistry | 2010

Expression of FAM20C in the osteogenesis and odontogenesis of mouse.

Xiaofang Wang; Jianjun Hao; Yixia Xie; Yao Sun; Brianda Hernandez; Albert K. Yamoah; Monica Prasad; Qinglin Zhu; Jian Q. Feng; Chunlin Qin

Mutations in FAM20C were recently identified as the cause of lethal osteosclerotic bone dysplasia, which highlighted the important role of this molecule in biomineralization. No systematic studies have been performed to evaluate the expression pattern of this relatively new molecule in the developmental processes of bone and tooth. In the present study, we analyzed in detail the expression profile of FAM20C during osteogenesis and odontogenesis using ISH and IHC approaches. The specimens analyzed were mouse tissues spanning embryonic day 13.5 (E13.5) to postnatal 8 weeks. The earliest presence of FAM20C was observed at E14.5. During osteogenesis, FAM20C mRNA was detected in the chondrocytes and osteoblasts of the long bone, whereas its protein was observed in the extracellular matrix (ECM) of bone and in the cytoplasm of the chondrocytes, osteoblasts, and osteocytes. During odontogenesis, FAM20C mRNA was detected in the ameloblasts, odontoblasts, cementoblasts, and periodontal ligament fibroblasts, whereas its protein was observed in the matrices of dentin, enamel, and alveolar bone and in the cytoplasm of the aforementioned cells. The temporospatial expression profile revealed in this study indicates that FAM20C is an ECM protein that may play an important role in controlling the mineralization of bone and tooth.


Journal of Biological Chemistry | 2008

Endoplasmic Reticulum Chaperone Protein GRP-78 Mediates Endocytosis of Dentin Matrix Protein 1

Sriram Ravindran; Karthikeyan Narayanan; Asha Sarah Eapen; Jianjun Hao; Sylvie Y. Blond; Anne George

Dentin matrix protein 1 (DMP1), a phosphorylated protein present in the mineral phase of both vertebrates and invertebrates, is a key regulatory protein during biogenic formation of mineral deposits. Previously we showed that DMP1 is localized in the nuclear compartment of preosteoblasts and preodontoblasts. In the nucleus DMP1 might play an important role in the regulation of genes that control osteoblast or odontoblast differentiation. Here, we show that cellular uptake of DMP1 occurs through endocytosis. Interestingly, this process is initiated by DMP1 binding to the glucose-regulated protein-78 (GRP-78) localized on the plasma membrane of preodontoblast cells. Binding of DMP1 to GRP-78 receptor was determined to be specific and saturable with a binding dissociation constant KD = 85 nm. We further depict a road map for the endocytosed DMP1 and demonstrate that the internalization is mediated primarily by caveolae and that the vesicles containing DMP1 are routed to the nucleus along microtubules. Immunohistochemical analysis and binding studies performed with biotin-labeled DMP1 confirm spatial co-localization of DMP1 and GRP-78 in the preodontoblasts of a developing mouse molar. Co-localization of DMP1 with GRP-78 was also observed in T4-4 preodontoblast cells, dental pulp stem cells, and primary preodontoblasts. By small interfering RNA techniques, we demonstrate that the receptor for DMP1 is GRP-78. Therefore, binding of DMP1 with GRP-78 receptor might be an important mechanism by which DMP1 is internalized and transported to the nucleus during bone and tooth development.


Journal of Endodontics | 2011

Biomimetic approach to perforation repair using dental pulp stem cells and dentin matrix protein 1.

Rajaa Alsanea; Sriram Ravindran; Mohamed I. Fayad; Bradford R. Johnson; Christopher S. Wenckus; Jianjun Hao; Anne George

INTRODUCTION Dentin regeneration could be an ideal treatment option to restore tissue function. This study was conducted to evaluate the ability of dental pulp stem cells (DPSCs) and dentin matrix protein 1 (DMP1) impregnated within a collagen scaffold to regenerate dentin. METHODS Simulated perforations were created in 18 dentin wafers made from freshly extracted human molars. Six groups were established. They were (1) empty wafers, (2) mineral trioxide aggregate, (3) collagen scaffold, (4) scaffold with DMP1, (5) scaffold with DPSCs, and (6) scaffold with DPSCs and DMP1. One sample was placed subcutaneously in each mouse with three mice in each group. After 12 weeks, the samples were subjected to radiographic, histological, and immunohistochemical evaluations. RESULTS DPSCs impregnated within a collagen scaffold differentiated into odontoblast-like cells forming a highly cellular, vascular, and mineralized matrix in the presence of DMP1. CONCLUSIONS A triad consisting of DPSCs, DMP1, and a collagen scaffold promotes dentin regeneration in a simulated perforation repair model.

Collaboration


Dive into the Jianjun Hao's collaboration.

Top Co-Authors

Avatar

Anne George

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Karthikeyan Narayanan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Gen He

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Sriram Ravindran

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Asha Sarah Eapen

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla A. Evans

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Mohamed I. Fayad

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Sivakumar Gajjeraman

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Tanvi Muni

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge