Jianjun Zhong
Chongqing Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianjun Zhong.
Journal of Neurotrauma | 2016
Fang Cao; Yong Jiang; Yue Wu; Jianjun Zhong; Jieshi Liu; Xinghu Qin; Ligang Chen; Michael P. Vitek; Fengqiao Li; Lu Xu; Xiaochuan Sun
The degree of post-traumatic brain edema and dysfunction of the blood-brain barrier (BBB) influences the neurofunctional outcome after a traumatic brain injury (TBI). Previous studies have demonstrated that the administration of apolipoprotein E-mimetic peptide COG1410 reduces the brain water content after subarachnoid hemorrhage, intra-cerebral hemorrhage, and focal brain ischemia. However, the effects of COG1410 on vasogenic edema following TBI are not known. The current study evaluated the effects of 1 mg/kg daily COG1410 versus saline administered intravenously after a controlled cortical impact (CCI) injury on BBB dysfunction and vasogenic edema at an acute stage in mice. The results demonstrated that treatment with COG1410 suppressed the activity of matrix metalloproteinase-9, reduced the disruption of the BBB and Evans Blue dye extravasation, reduced the TBI lesion volume and vasogenic edema, and decreased the functional deficits compared with mice treated with vehicle, at an acute stage after CCI. These findings suggest that COG1410 is a promising preclinical therapeutic agent for the treatment of traumatic brain injury.
Neuroscience | 2017
Jianjun Zhong; Chongjie Cheng; Han Liu; Zhijian Huang; Yue Wu; Zhipeng Teng; Junchi He; Hongrong Zhang; Jinchuan Wu; Fang Cao; Li Jiang; Xiaochuan Sun
Bexarotene has been proved to have neuroprotective effects in many animal models of neurological diseases. However, its neuroprotection in traumatic brain injury (TBI) is still unknown. This study aims to explore the neuroprotective effects of bexarotene on TBI and its possible mechanism. Controlled cortical impact (CCI) model was used to simulate TBI in C57BL/6 mice as well as APOE gene knockout (APOE-KO) mice. After CCI, mice were daily dosed with bexarotene or vehicle solution intraperitoneally. The motor function, learning and memory, inflammatory factors, microglia amount, apoptosis condition around injury site and main side-effects were all measured. The results showed that, after CCI, bexarotene treatment markedly improved the motor function and spatial memory in C57BL/6 compare to APOE-KO mice which showed no improvement. The inflammatory cytokines, microglia amount, cell apoptosis rate, and protein of cleaved caspase-3 around the injury site were markedly upregulated after TBI in both C57BL/6 and APOE-KO mice, and all these upregulation were significantly mitigated by bexarotene treatment in C57BL/6 mice, but not in APOE-KO mice. No side-effects were detected after consecutive administration. Taken together, bexarotene inhibits the inflammatory response as well as cell apoptosis and improves the neurological function of mice after TBI partially through apolipoprotein E. This may make it a promising candidate for the therapeutic treatment after TBI.
Brain Research | 2016
Jianjun Zhong; Li Jiang; Chongjie Cheng; Zhijian Huang; Hongrong Zhang; Han Liu; Junchi He; Fang Cao; Jianhua Peng; Yong Jiang; Xiaochuan Sun
BACKGROUND AND OBJECTIVE The present study aims to detect the altered lncRNA expression in the mouse cortex after traumatic brain injury (TBI). We also simultaneously detected the altered mRNA profile to further analyze the possible function of lncRNA. METHOD C57BL/6 mice (n=18) were used to construct a controlled cortical impact model. At 24h post-TBI, the cortex around injury site was collected and the total RNA was extracted to construct the cDNA library. RNA sequencing (RNA-seq) was carried out followed by RT-PCR for confirmation. Bioinformatic analysis (including GO analysis, KEGG pathway and co-expression analysis) also were performed. RESULTS A total of 64,530 transcripts were detected in the current sequencing study, in which 27,457 transcripts were identified as mRNA and 37,073 transcripts as lncRNA. A total of 1580 mRNAs (1430 up-regulated and 150 down-regulated) and 823 lncRNAs (667 up-regulated and 156 down-regulated) were significantly changed according to the criteria ( (|)log2((fold change))|>1 and P<0.05). These altered mRNAs were mainly related to inflammatory and immunological activity, metabolism, neuronal and vascular network. The expression of single lncRNA may be related with several mRNAs, and so was the mRNA. Also, a total of 360 new mRNAs and 8041 new lncRNAs were identified. The good reproducibility and reliability of RNA-seq were confirmed by RT-PCR. CONCLUSION Numerous lncRNAs and mRNAs were significantly altered in mouse cortex around the injury site 24h after TBI. Our present data may provide a promising approach for further study about TBI.
Neuroscience | 2015
Li Jiang; Jianjun Zhong; X. Dou; Chongjie Cheng; Zhijian Huang; Xiaoduan Sun
OBJECTIVE The current study aimed to explore the effects of apolipoprotein e (ApoE) on intracellular calcium ([Ca(2+)]i) and apoptosis of neurons after mechanical injury in vitro. METHODS A neuron mechanical injury model was established after primary neurons obtained from APOE knockout and wild-type (WT) mice, and four experimental groups were generated: Group-ApoE4, Group-ApoE3, Group-ApoE(-) and Group-WT. Recombinant ApoE4 and ApoE3 were added to Group-ApoE4 and Group-ApoE3 respectively, and Group-ApoE(-) and Group-WT were control groups. Intracellular calcium was labeled by fluo-3/AM and examined using laser scanning confocal microscope and flow cytometry, and the apoptosis of neurons was also evaluated. RESULTS The intracellular calcium levels and apoptosis rates of mice neurons were significantly higher in Group-ApoE4 than in Group-ApoE3 and Group-WT after mechanical injury. However, without mechanical injury on neurons, no significant differences in intracellular calcium levels and apoptosis rates were found among all four experimental groups. The effects of ApoE4 on intracellular calcium levels and apoptosis rates of injured neurons were partly decreased by EGTA treatment. CONCLUSION Compared with ApoE3-treatment and WT neurons, ApoE4 caused higher intracellular calcium levels and apoptosis rates of neurons after mechanical injury. This suggested APOE polymorphisms may affect neuron apoptosis after mechanical injury through different influences on intracellular calcium levels.
Journal of Neurochemistry | 2016
Xiaocui Tian; Jianhua Peng; Jianjun Zhong; Mei Yang; Jinwei Pang; Jie Lou; Minghang Li; Ruidi An; Qian Zhang; Lu Xu; Zhi Dong
β‐Caryophyllene (BCP) mediates neuroprotection in cerebral ischemic animals. The neurovascular unit (NVU) acts as an intricate network to maintain the neuronal homeostatic microenvironment. However, the effects exerted by BCP on NVU remain unclear. Therefore, we established an in vitro NVU model to investigate the effects of BCP on oxygen‐glucose deprivation and re‐oxygenation (OGD/R)‐induced injury. This model involved the co‐culture of brain microvascular endothelial cells, neurons, and astrocytes. BCP (10 μmol/L) was applied for 24 h prior to OGD/R and maintained throughout OGD/R. Blood–brain barrier (BBB) integrity and neuronal apoptosis were analyzed. BCP pre‐treatment prior to the initiation of OGD/R significantly (i) decreased BBB permeability and neuronal apoptosis, (ii) mitigated oxidative stress damage and the release of inflammatory cytokines, (iii) down‐regulated Bax expression, metalloproteinase‐9 activity and expression, and (iv) up‐regulated claudin‐5, occludin, ZO‐1, growth‐associated protein‐43 and Bcl‐2 expression. Thus, BCP pre‐treatment exerted multiple protective effects on NVU in the context of OGD/R‐induced injury. These protective effects potentially occur via reductions in oxidative stress damage and inflammatory cytokines that induce BBB breakdown, subsequently resulting in reduced neuronal apoptosis. The NVU serves as putative therapeutic targets for cerebral ischemia, and the results of this study provide new insights for the application of BCP as a neuroprotective agent.
Journal of Neurochemistry | 2016
Zhijian Huang; Chongjie Cheng; Li Jiang; Zhanyang Yu; Fang Cao; Jianjun Zhong; Zongduo Guo; Xiaochuan Sun
Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in youth, but to date, effective therapies are still lacking. Previous studies revealed a marked response of apolipoprotein J (ApoJ) expression to the brain injury. The aim of this study was to determine the potential roles of ApoJ in functional recovery following TBI. After controlled cortex impact (CCI), a TBI model, in adult wild‐type mice, ApoJ expression was up‐regulated since 6 h post‐injury and sustained for 5 days. Animals infused with recombinant human ApoJ intraventricularly at 30 min prior to CCI showed significantly reduced oxidative stress (3‐nitrotyrosine, 4‐hydroxynonenal) and complement activation (C5b‐9). In addition, ApoJ treatment was shown to suppress the inflammatory response (glial activation, cytokine expression), blood–brain barrier disruption (Evans blue extravasation), and cerebral edema (water content) induced by CCI. Concomitantly, improved neuronal maintenance and neurological behavioral performance were observed in ApoJ‐treated mice compared with the vehicle group. These findings support a neuroprotective role of ApoJ via multifunctional pathways, providing a novel and encouraging treatment strategy for TBI.
Scientific Reports | 2017
Jianhua Peng; Yue Wu; Xiaocui Tian; Jinwei Pang; Li Kuai; Fang Cao; Xinghu Qin; Jianjun Zhong; Xinshen Li; Yong Li; Xiaochuan Sun; Ligang Chen; Yong Jiang
Subarachnoid haemorrhage (SAH) is a fatal neurovascular disease following cerebral aneurysm rupture with high morbidity and mortality rates. Long non-coding RNAs (lncRNAs) are a type of mammalian genome transcript, are abundantly expressed in the brain and are involved in many nervous system diseases. However, little is currently known regarding the influence of lncRNAs in early brain injury (EBI) after SAH. This study analysed the expression profiles of lncRNAs and mRNAs in SAH brain tissues of mice using high-throughput sequencing. The results showed a remarkable difference in lncRNA and mRNA transcripts between SAH and control brains. Approximately 617 lncRNA transcripts and 441 mRNA transcripts were aberrantly expressed at 24 hours after SAH. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the differentially expressed mRNAs were mostly involved in inflammation. Based on the lncRNA/mRNA co-expression network, knockdown of fantom3_F730004F19 reduced the mRNA and protein levels of CD14 and toll-like receptor 4 (TLR4) and attenuated inflammation in BV-2 microglia cells. These results indicate that lncRNA fantom3_F730004F19 may be associated with microglia induced inflammation via the TLR signaling pathway in EBI following SAH. LncRNA represent a potential therapeutic target for the prognosis, diagnosis, and treatment of SAH.
Scientific Reports | 2017
Zhipeng Teng; Zongduo Guo; Jianjun Zhong; Chongjie Cheng; Zhijian Huang; Yue Wu; Shuang Tang; Chao Luo; Xing Peng; Haitao Wu; Xiaochuan Sun; Li Jiang
Apolipoprotein E (ApoE), encoded by the ApoE gene (APOE), influences the outcomes of traumatic brain injury (TBI), but the mechanism remains unclear. The present study aimed to investigate the effects of different ApoEs on the outcome of TBI and to explore the possible mechanisms. Controlled cortical impact (CCI) was performed on APOEε3 (E3) and APOEε4 (E4) transgenic mice, APOE-KO (KO) mice, and wild type (WT) mice to construct an in vivo TBI model. Neurological deficits, blood brain barrier (BBB) permeability and brain edema were detected at days 1, 3, and 7 after TBI. The results revealed no significant differences among the four groups at day 1 or day 3 after injury, but more severe deficits were found in E4 and KO mice than in E3 and WT mice. Furthermore, a significant loss of tight junction proteins was observed in E4 and KO mice compared with E3 and WT mice at day 7. Additionally, more expression and activation of NF-κB and MMP-9 were found in E4 mice compared with E3 mice. Different ApoEs had distinct effects on neuro-function and BBB integrity after TBI. ApoE3, but not E4, might inhibit the NF-κB/MMP-9 pathway to alleviate BBB disruption and improve TBI outcomes.
Scientific Reports | 2017
Hongrong Zhang; Li Jiang; Zongduo Guo; Jianjun Zhong; Jingchuan Wu; Junchi He; Han Liu; Zhaohui He; Haitao Wu; Chongjie Cheng; Xiaochuan Sun
Cerebral vascular smooth muscle cell (VSMC) phenotypic switch is involved in the pathophysiology of vascular injury after aneurysmal subarachnoid hemorrhage (aSAH), whereas the molecular mechanism underlying it remains largely speculative. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) has been implicated to modulate the vascular cells proliferation and vascular homeostasis. In the present study, we investigated the potential role of PPARβ/δ in VSMC phenotypic switch following SAH. Activation of PPARβ/δ by GW0742 and adenoviruses PPARβ/δ (Ad-PPARβ/δ) significantly inhibited hemoglobin-induced VSMC phenotypic switch. However, the effects of PPARβ/δ on VSMC phenotypic switch were partly obstacled in the presence of LY294002, a potent inhibitor of Phosphatidyl-Inositol-3 Kinase-AKT (PI3K/AKT). Furthermore, following study demonstrated that PPARβ/δ-induced PI3K/AKT activation can also contribute to Serum Response Factor (SRF) nucleus localization and Myocardin expression, which was highly associated with VSMC phenotypic switch. Finally, we found that Ad-PPARβ/δ positively modulated vascular remodeling in SAH rats, i.e. the diameter of basilar artery and the thickness of vessel wall. In addition, overexpression of PPARβ/δ by adenoviruses significantly improved neurological outcome. Taken together, this study identified PPARβ/δ as a useful regulator for VSMC phenotypic switch and vascular remodeling following SAH, providing novel insights into the therapeutic strategies of delayed cerebral ischemia.
Neurobiology of Disease | 2018
Junchi He; Han Liu; Jianjun Zhong; Zongduo Guo; Jingchuan Wu; Hongrong Zhang; Zhijian Huang; Li Jiang; Hui Li; Zhaosi Zhang; Liu Liu; Yue Wu; Lingjun Qi; Xiaochuan Sun; Chongjie Cheng
Traumatic brain injury (TBI) causes a high rate of mortality and disability worldwide, and there exists almost none effective drugs to protect against TBI. Neurotoxicity occurring after TBI can be derived from microglia and astrocytes, and causes neuronal death and synapse loss. Bexarotene has been demonstrated to protect neurons in CNS diseases. In the present study, we aimed to investigate the potential role of bexarotene in protecting against neurotoxicity after TBI, as well as the underlying mechanism. The controlled cortical impact (CCI) model was established on adult C57BL/6 mice, followed by intraperitoneal administration of bexarotene for 14 consecutive days. We found that bexarotene improved sensorimotor function and cognitive recovery in CCI mice. In addition, bexarotene decreased neuronal death and synapse loss, as well as inhibited apoptotic cascade. Moreover, bexarotene treatment reduced M1 microglia polarization, microglia-derived pro-inflammatory cytokines, and the number of A1 astrocytes after CCI. These effects of bexarotene were partially abolished by T0070907, an antagonist of peroxisome proliferator-activated receptor gamma (PPARγ). Additionally, bexarotene enhanced nuclear translocation and transcriptional activity of PPARγ. These findings show that bexarotene inhibits neurotoxicity in mice after TBI, at least in part through a PPARγ-dependent mechanism.