Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiankun Tong is active.

Publication


Featured researches published by Jiankun Tong.


Immunity | 2001

ERM-Dependent Movement of CD43 Defines a Novel Protein Complex Distal to the Immunological Synapse

Eric J. Allenspach; Patrick Cullinan; Jiankun Tong; Qizhi Tang; Amanda G. Tesciuba; Stephenie M. Takahashi; Renell Morgan; Janis K. Burkhardt; Anne I. Sperling

The large mucin CD43 is actively excluded from T cell/APC interaction sites, concentrating in a membrane domain distal to the site of TCR engagement. The cytoplasmic region of CD43 was necessary and sufficient for this antipodal movement. ERM cytoskeletal adaptor proteins colocalized with CD43 in this domain. An ERM dominant-negative mutant blocked the distal accumulation of CD43 and another known ERM binding protein, Rho-GDI. Inhibition of ERM function decreased the production of IL-2 and IFNgamma, without affecting PKC(theta) focusing or CD69 upregulation. These results indicate that ERM proteins organize a complex distal to the T cell/APC interaction site and provide evidence that full T cell activation may involve removal of inhibitory proteins from the immunological synapse.


Journal of Experimental Medicine | 2007

Signaling through FcγRIII is required for optimal T helper type (Th)2 responses and Th2-mediated airway inflammation

Hozefa S. Bandukwala; Bryan S. Clay; Jiankun Tong; Purvi D. Mody; Rebecca A. Shilling; J. Sjef Verbeek; Joel V. Weinstock; Julian Solway; Anne I. Sperling

Although inhibitory Fcγ receptors have been demonstrated to promote mucosal tolerance, the role of activating Fcγ receptors in modulating T helper type (Th)2-dependent inflammatory responses characteristic of asthma and allergies remains unclear. Here, we demonstrate that signaling via activating Fcγ receptors in conjunction with Toll-like receptor 4 stimulation modulated cytokine production from bone marrow–derived dendritic cells (DCs) and augmented their ability to promote Th2 responses. Ligation of the low affinity receptor FcγRIII was specifically required for the enhanced Th2 responses, as FcγRIII−/− DCs failed to augment Th2-mediated airway inflammation in vivo or induce Th2 differentiation in vitro. Further, FcγRIII−/− mice had impaired Th2 cytokine production and exhibited reduced airway inflammation, whereas no defect was found in FcγRI−/− mice. The augmentation of Th2 immunity was regulated by interleukin 10 production from the DCs but was distinct and independent of the well-established role of FcγRIII in augmenting antigen presentation. Thus, our studies reveal a novel and specific role for FcγRIII signaling in the regulation of Th cell responses and suggest that in addition to immunoglobulin (Ig)E, antigen-specific IgG also contributes to the pathogenesis of Th2-mediated diseases such as asthma and allergies.


Respiratory Research | 2009

Role of lysophosphatidic acid receptor LPA2 in the development of allergic airway inflammation in a murine model of asthma

Yutong Zhao; Jiankun Tong; Donghong He; Srikanth Pendyala; Berdyshev Evgeny; Jerold Chun; Anne I. Sperling; Viswanathan Natarajan

BackgroundLysophosphatidic acid (LPA) plays a critical role in airway inflammation through G protein-coupled LPA receptors (LPA1-3). We have demonstrated that LPA induced cytokine and lipid mediator release in human bronchial epithelial cells. Here we provide evidence for the role of LPA and LPA receptors in Th2-dominant airway inflammation.MethodsWild type, LPA1 heterozygous knockout mice (LPA1+/-), and LPA2 heterozygous knockout mice (LPA2+/-) were sensitized with inactivated Schistosoma mansoni eggs and local antigenic challenge with Schistosoma mansoni soluble egg Ag (SEA) in the lungs. Bronchoalveolar larvage (BAL) fluids and lung tissues were collected for analysis of inflammatory responses. Further, tracheal epithelial cells were isolated and challenged with LPA.ResultsBAL fluids from Schistosoma mansoni egg-sensitized and challenged wild type mice (4 days of challenge) showed increase of LPA level (~2.8 fold), compared to control mice. LPA2+/- mice, but not LPA1+/- mice, exposed to Schistosoma mansoni egg revealed significantly reduced cell numbers and eosinophils in BAL fluids, compared to challenged wild type mice. Both LPA2+/- and LPA1+/- mice showed decreases in bronchial goblet cells. LPA2+/- mice, but not LPA1+/- mice showed the decreases in prostaglandin E2 (PGE2) and LPA levels in BAL fluids after SEA challenge. The PGE2 production by LPA was reduced in isolated tracheal epithelial cells from LPA2+/- mice. These results suggest that LPA and LPA receptors are involved in Schistosoma mansoni egg-mediated inflammation and further studies are proposed to understand the role of LPA and LPA receptors in the inflammatory process.


Journal of Experimental Medicine | 2006

Fas-positive T cells regulate the resolution of airway inflammation in a murine model of asthma

Jiankun Tong; Hozefa S. Bandulwala; Bryan S. Clay; Robert A. Anders; Rebecca A. Shilling; Diwakar D. Balachandran; Bohao Chen; Joel V. Weinstock; Julian Solway; Kimm J. Hamann; Anne I. Sperling

Persistent airway inflammation, mucus production, and airway hyperreactivity are the major contributors to the frequency and severity of asthma. Why lung inflammation persists in asthmatics remains unclear. It has been proposed that Fas-mediated apoptosis of inflammatory cells is a fundamental mechanism involved in the resolution of eosinophilic airway inflammation. Because infiltrating eosinophils are highly sensitive to Fas-mediated apoptosis, it has been presumed that direct ligation of Fas on eosinophils is involved. Here, we utilize adoptive transfers of T cells to demonstrate that the delayed resolution of eosinophilia in Fas-deficient mice is a downstream effect of Fas deficiency on T cells, not eosinophils. Interestingly, the mice that received Fas-deficient T cells, but not the controls, developed a persistent phase of inflammation that failed to resolve even 6 wk after the last challenge. This persistent phase correlated with decreased interferon (IFN)γ production by Fas-deficient T cells and could be reproduced with adoptive transfer of IFNγ-deficient T cells. These data demonstrate that Fas deficiency on T cells is sufficient for the development of long-term allergic airway disease in mice and implies that deregulation of death receptors such as Fas on human T cells could be an important factor in the development and/or chronic nature of asthma.


Journal of Experimental Medicine | 2004

CD43 Regulation of T Cell Activation Is Not through Steric Inhibition of T Cell–APC Interactions but through an Intracellular Mechanism

Jiankun Tong; Eric J. Allenspach; Stephenie M. Takahashi; Purvi D. Mody; Chan Park; Janis K. Burkhardt; Anne I. Sperling

CD43 is a large heavily glycosylated protein highly expressed on T cells and actively excluded from the immunological synapse through interactions with ezrin-radixin-moesin proteins. Due to its size and charge, it has been proposed that the CD43 ectodomain acts as a physical barrier to T cell–APC interactions. We have addressed this hypothesis by studying the effect of reconstituting CD43 mutants into the hyperproliferative CD43−/− T cells. Reintroduction of full-length CD43 reversed the CD43−/− T cell hyperproliferation. Interestingly, despite the lack of exclusion from the interaction site, a mutant containing the CD43 ectodomain on a glycosylphosphatidylinositol linkage was ineffective. Additionally, T cell–APC conjugate formation was not affected by this ectodomain-only construct. In contrast, CD43−/− T cell hyperproliferation was reversed by an intracellular-only CD43 fused to the small ectodomain of hCD16. Mutation of this intracellular-only CD43 such that it could not move from the T cell–APC contact site had no further affect on proliferation than the moveable CD43 but did dramatically reduce interleukin-2 production. Thus, the exclusion of the CD43 intracellular region from the immunological synapse is required for CD43 regulation of interleukin-2 production, but the presence of the cytoplasmic tail, independent of its location, is sufficient to reverse CD43−/− T cell hyperproliferation.


Cellular Immunology | 2009

CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo

Rebecca A. Shilling; Bryan S. Clay; Amanda G. Tesciuba; Elizabeth Berry; Tiffany Lu; Tamson V. Moore; Hozefa S. Bandukwala; Jiankun Tong; Joel V. Weinstock; Richard A. Flavell; Tom Horan; Steve K. Yoshinaga; Andrew A. Welcher; Anne I. Sperling

Previous work has shown ICOS can function independently of CD28, but whether either molecule can compensate for the other in vivo is not known. Since ICOS is a potent inducer of Th2 cytokines and linked to allergy and elevated serum IgE in humans, we hypothesized that augmenting ICOS costimulation in murine allergic airway disease may overcome CD28 deficiency. While ICOS was expressed on T cells from CD28(-/-) mice, Th2-mediated airway inflammation was not induced in CD28(-/-) mice by increased ICOS costimulation. Further, we determined if augmenting CD28 costimulation could compensate for ICOS deficiency. ICOS(-/-) mice had a defect in airway eosinophilia that was not overcome by augmenting CD28 costimulation. CD28 costimulation also did not fully compensate for ICOS for antibody responses, germinal center formation or the development of follicular B helper T cells. CD28 and ICOS play complementary non-overlapping roles in the development of Th2 immunity in vivo.


Journal of Immunology | 2008

CD43 Regulates Th2 Differentiation and Inflammation

Amélie Collins; Purvi D. Mody; Diwaker Balachandran; Kammi J. Henriksen; Cassandra E. Smith; Jiankun Tong; Bryan S. Clay; Stephen D. Miller; Anne I. Sperling

CD43 is a highly glycosylated transmembrane protein that regulates T cell activation. CD43−/− T cells are hyperproliferative and the cytoplasmic tail of CD43 has been found to be sufficient to reconstitute wild-type proliferation levels, suggesting an intracellular mechanism. In this study, we report that upon TCR ligation CD43−/− T cells demonstrated no increase in tyrosine phosphorylation but a decreased calcium flux. Interestingly, CD43−/− T cells preferentially differentiated into Th2 cells in vitro, and CD43−/− T cells show increased GATA-3 translocation into the nucleus. In vivo, CD43−/− mice exhibited increased inflammation in two separate models of Th2-mediated allergic airway disease. In contrast, in Th1-mediated diabetes, nonobese diabetic CD43−/− mice did not significantly differ from wild-type mice in disease onset or progression. Th1-induced experimental autoimmune encephalomyelitis to MOG35–55 was also normal in the CD43−/− mice. Nonetheless, the CD43−/− mice produced more IL-5 when restimulated with MOG35–55 in vitro and demonstrated decreased delayed-type hypersensitivity responses. Together, these data demonstrate that although CD43−/− T cells preferentially differentiate into Th2 cells, this response is not sufficient to protect against Th1-mediated autoimmune responses.


American Journal of Respiratory Cell and Molecular Biology | 2010

Fas Ligand Expression on T Cells Is Sufficient to Prevent Prolonged Airway Inflammation in a Murine Model of Asthma

Jiankun Tong; Bryan S. Clay; Caroline M. Ferreira; Hozefa S. Bandukwala; Tamson V. Moore; Kelly M. Blaine; Jesse W. Williams; Lisa M. Hoffman; Kimm J. Hamann; Rebecca A. Shilling; Joel V. Weinstock; Anne I. Sperling

Our previous studies revealed that, in a murine model of asthma, mice that received Fas-deficient T cells developed a prolonged phase of airway inflammation, mucus production, and airway hyperreactivity that failed to resolve even 6 weeks after the last challenge. To investigate how Fas-Fas ligand (FasL) interaction occurs between T cells and other cells in vivo, Gld mice with abnormalities of the FasL signaling pathway were used. The reconstituted mice were made by transferring T cells from B6 or Gld mice to Rag(-/-) or FasL-deficient Rag(-/-) mice. We found that Rag(-/-) mice that received B6 T cells resolved the airway inflammation, whereas FasL-deficient Rag(-/-) mice that received Gld T cells developed a prolonged airway inflammation at Day 28, with decreased IFN-gamma production. Both FasL-deficient Rag(-/-) mice that received B6 T cells and Rag(-/-) mice that received Gld T cells also had completely resolved their airway inflammation by Day 28 after challenge. Interestingly, FasL-deficient Rag(-/-) mice that received Gld T cells eventually resolved airway inflammation at Day 42, with a similar level of IFN-gamma production to that of control group. These results demonstrate that FasL expression on either T cells only or non-T cells only was sufficient for the eventual resolution of airway inflammation, and the prolonged airway inflammation in FasL-deficient Rag(-/-) mice that received Gld T cells was correlated with decreased IFN-gamma production by Gld T cells.


american thoracic society international conference | 2010

The Contribution Of Intrinsic And Extrinsic Apoptotic Pathways In Th2-mediated Inflammation

Caroline M. Ferreira; Jesse W. Williams; Jiankun Tong; Bryan S. Clay; Kelly M. Blaine; Rebecca A. Shilling; Anne I. Sperling


american thoracic society international conference | 2010

Allergen Exposure, Homeostatic Proliferation, And Fas Deficiency Lead To Defects In Resolution Of Th2-mediated Airway Inflammation

Caroline M. Ferreira; Jesse W. Williams; Jiankun Tong; Kelly M. Blaine; Alexander Chervonsky; Rebecca A. Shilling; Anne I. Sperling

Collaboration


Dive into the Jiankun Tong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesse W. Williams

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge