Jianlun Liu
Guangxi Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianlun Liu.
PLOS ONE | 2013
Qiuyun Li; Yi Jiang; Wei Wei; Huawei Yang; Jianlun Liu
Background Capecitabine has proven effective as a chemotherapy for metastatic breast cancer. Though several Phase II/III studies of capecitabine as neoadjuvant chemotherapy have been conducted, the results still remain inconsistent. Therefore, we performed a meta-analysis to obtain more precise understanding of the role of capecitabine in neoadjuvant chemotherapy for breast cancer patients. Methods The electronic database PubMed and online abstracts from ASCO and SABCS were searched to identify randomized clinical trials comparing neoadjuvant chemotherapy with or without capecitabine in early/operable breast cancer patients without distant metastasis. Risk ratios were used to estimate the association between capecitabine in neoadjuvant chemotherapy and various efficacy outcomes. Fixed- or random-effect models were adopted to pool data in RevMan 5.1. Results Five studies were included in the meta-analysis. Neoadjuvant use of capecitabine with anthracycline and/or taxane based therapy was not associated with significant improvement in clinical outcomes including: pathologic complete response in breast (pCR; RR = 1.10, 95% CI 0.87–1.40, p = 0.43), pCR in breast tumor and nodes (tnpCR RR = 0.99, 95% CI 0.83–1.18, p = 0.90), overall response rate (ORR; RR = 1.00, 95% CI 0.94–1.07, p = 0.93), or breast-conserving surgery (BCS; RR = 0.98, 95% CI 0.93–1.04, p = 0.49). Conclusions Neoadjuvant treatment of breast cancer involving capecitabine did not significantly improve pCR, tnpCR, BCS or ORR. Thus adding capecitabine to neoadjuvant chemotherapy regimes is unlikely to improve outcomes in breast cancer patients without distant metastasis. Further research is required to establish the condition that capecitabine may be useful in breast cancer neoadjuvant chemotherapy.
Oncology Letters | 2015
Qiuyun Li; Wei Wei; Yi Jiang; Huawei Yang; Jianlun Liu
BRCA1 is a susceptibility gene that has a genetic predisposition for breast cancer. BRCA1 gene mutation is closely associated with familial hereditary breast cancer, but the BRCA1 gene mutation is rarely found in sporadic breast cancer. According to previous studies, decreased expression of BRCA1 was detected in certain types of sporadic breast cancer. Aberrant methylation of DNA promoter CpG islands is one of the mechanisms by which tumor suppressor gene expression and function is lost. The aim of the present study was to investigate BRCA1 gene expression, methylation status and clinical significance in sporadic types of breast cancer. Quantitative polymerase chain reaction (PCR) and bisulfite sequencing PCR were respectively used to detect expression differences of BRCA1 mRNA and BRCA1 methylation in the 49 cancerous and paired non-cancerous samples from patients with breast cancer. The associations of BRCA1 expression and methylation status with the clinicopathologic characteristics were analysed. BRCA1 mRNA expression levels in the 49 breast cancer tissues were lower than those in the paired non-cancerous tissues. There was a significant statistical difference (P=0.001). BRCA1 mRNA expression was not associated with the main clinicopathologic characteristics. Frequency of the BRCA1 promoter methylation in the breast cancerous tissues was significantly higher than that in the non-cancerous tissues (P=0.007); BRCA1 gene methylation status was negatively correlated with mRNA expression (P=0.029); and BRCA1 methylation exhibited no association with all clinicopathological features. DNA promoter hypermethylation may be the potential mechanism accounting for BRCA1 expression silence in part of sporadic types of breast cancer. Some patients with hypermethylated BRCA1 may display favorable clinicopathological status.
Oncology Letters | 2014
Yandan Lan; Jia Zhu; Jianlun Liu; Huawei Yang; Yi Jiang; Wei Wei
Periductal stromal sarcoma (PSS), spindle and epithelioid types, is a rare subtype of malignant fibroepithelial tumor. The morphological characteristics of this neoplasm are different from phyllodes tumor and stromal sarcoma. PSS exhibits biphasic histology with benign ductal elements and a sarcomatous stroma composed of spindle cells and lacking phyllodes tumor architecture. The therapeutic management of PSS is based on wide surgery with free margins, and adjuvant therapies are not required. To the best of our knowledge, the recurrence of PSS in ≤5 months has not been reported in the literature to date. This report describes a 43-year-old woman who presented to our hospital with a recurrence of nodules in the left breast. The patient had undergone lumpectomy at a different hospital 5 months previously, and a diagnosis of phyllodes tumor was pathologically confirmed. On presentation at our hospital, the patient underwent a second lumpectomy. Histological examination revealed PSS and the patient underwent a simple mastectomy of the left breast with no adjuvant treatment (such as chemotherapy or radiotherapy). After 9 months of close follow-up examinations, no recurrence was observed. PSS is an extremely rare disease with low-grade sarcomatous behavior, which may evolve into a phyllodes tumor or an entity of breast cancer. Therefore, frequent follow-up examinations are required.
Asian Pacific Journal of Cancer Prevention | 2012
Jianlun Liu; Wei Wei; Wei Tang; Yi Jiang; Huawei Yang; Jing-Tao Li; Xiao Zhou
OBJECTIVE The aim of this study was to investigate possible mechanisms of LOX gene effects on invasion and metastasis of breast cancer cells by RNA interference. METHODS LOX-RNAi-LV was designed, synthesized, and then transfected into a breast cancer cell line (MDA-MB-231). Expression of LOX, MMP-2 and MMP-9 was determined by real-time PCR, and protein expression of LOX by Western blotting. Cell migration and invasiveness were assessed with Transwell chambers. A total of 111 cases of breast cancer tissues, cancer-adjacent normal breast tissues, and 20 cases of benign lesion tissues were assessed by immunohistochemistry. RESULTS Expression of LOX mRNA and protein was suppressed, and the expression of MMP-2 and MMP-9 was significantly lower in the RNAi group than the control group (P<0.05), after LOX-RNAi-LV was transfection into MDA-MB-231 cells. Migration and invasion abilities were obviously inhibited. The expression of LOX protein in breast cancer, cancer-adjacent normal breast tissues and benign breast tumor were 48.6% (54/111), 26.1% (29/111), 20.0% (4/20), respectively, associations being noted with clinical stage, lymph node metastasis, tumor size and ER, PR, HER2, but not age. LOX protein was positively correlated with MMP-2 and MMP-9. CONCLUSION LOX displayed an important role in invasion and metastasis of breast cancer by regulating MMP-2 and MMP-9 expression which probably exerted synergistic effects on the extracellular matrix (ECM).
OncoTargets and Therapy | 2016
Minmin Zhang; Wei Wei; Jianlun Liu; Huawei Yang; Yi Jiang; Wei Tang; Qiuyun Li; Xiaoming Liao
The aim of this study was to compare the effectiveness and toxicity of neoadjuvant chemotherapy regimens, xeloda/epirubicin/cyclophosphamide (XEC) vs 5-fluorouracil/epirubicin/cyclophosphamide (FEC), followed by adjuvant chemotherapy regimens, capecitabine/taxotere (XT) vs taxotere (T), in axillary lymph node (LN)-positive early-stage breast cancer. In this randomized, Phase III trial, 137 patients with operable primary breast cancer (T2-0, N0-1) who were tested axillary LN positive through aspiration biopsy of axillary LNs were randomized (1:1) to four 3-weekly cycles of XEC or FEC. Patients underwent surgery within 4–6 weeks after the fourth cycle, followed by four adjuvant cycles of 3-weekly XT or T. The primary end point was tumor pathological complete response. Toxicity profiles were secondary objectives. In total, 131 patients had clinical and radiological evaluation of response and underwent surgery. Treatment with XEC led to an increased rate of pathological complete response in primary tumor (18% vs 6%, respectively, P=0.027) and objective remission rate (87% vs 73%, P=0.048) compared to FEC. Clinical complete response occurred in 20% and 7% for XEC and FEC, respectively. Compared to FEC, XEC was associated with more hand-foot syndrome (57% vs 11%, P<0.001) and 3/4 grade nausea/vomiting/diarrhea (30% vs 14%, P=0.034) but less phlebitis (3% vs 14%, P=0.035). XT and T adjuvant chemotherapy regimens were well tolerated: treatment-related 3/4 grade adverse events occurred in 28% and 17% of patients receiving XT and T, respectively.
Oncology Reports | 2015
Jia Zhu; Qiuyun Li; Jianlun Liu; Wei Wei; Huawei Yang; Wei Tang
RSK4 has been shown to inhibit the growth of certain cancer cells. The aim of this study was to construct a lentiviral vector of RSK4-shRNA (Lenti-RSK4-shRNA) to specifically block the expression of RSK4 in the human breast adenocarcinoma cell line MCF-7, and investigate the effect of the RSK4 gene on cell proliferation and invasion in vitro and in vivo. Lenti-RSK4-shRNA was stably transfected into MCF-7 cells. RSK4 mRNA and protein expression were measured by fluorescence quantitative RT-PCR and western blot analysis. Cell proliferation was evaluated by MTT assays and flow cytometric analysis. Invasion was evaluated by Transwell assays and xenograft nude mouse models. The expression of RSK4 mRNA, Ki-67 mRNA, cyclin D1 mRNA, CXCR4 mRNA and E-cadherin mRNA of tumor xenografts were detected by fluorescence quantitative RT-PCR. Significant decreases in RSK4 mRNA and protein expression was detected in MCF-7 cells carrying lentiviral RSK4-shRNA vector. The cell proliferation was significantly promoted in the RSK4-shRNA group as compared to that in the negative and blank control group. In addition, the number of cells in the S phase in the RSK4‑shRNA group was significantly greater than the blank and negative control groups (P<0.05). Furthermore, the number of invading cells was increased in the RSK4-shRNA (P<0.05). In vivo, we also found that the knockdown of RSK4 promoted tumorigenicity and migration in the xenograft nude mouse model. In addition, we showed that the RSK4 mRNA and E-cadherin mRNA expression were significantly lower in the RSK4-shRNA group compared to that in negative and blank control group (both P<0.05), while the Ki-67 mRNA, cyclin D1 mRNA and CXCR4 mRNA were higher in the shRNA group compared to that in negative and blank control group (both P<0.05). In conclusion, downregulation of RSK4 expression is indicated to be associated with tumor cell proliferation and invasion, and silencing of the RSK4 may be involved in the development and progression of breast cancer through the changes of Ki-67, cyclin D1, CXCR4 and E-cadherin, and suggesting that RSK4 may act as a potential cancer suppressor gene and therapeutic target for the treatment of breast cancer.
Biomedicine & Pharmacotherapy | 2017
Xiao Zhou; Zhen Huang; Huawei Yang; Yi Jiang; Wei Wei; Qiuyun Li; Qinguo Mo; Jianlun Liu
The resistance to therapy is a major clinical challenge for advanced stage breast cancer. Identification of novel potential therapeutic targets is needed to overcome chemoresistance. In this work, we identified a target that was critically involved in breast cancer growth and chemoresistance. We demonstrated that β-glucosidase expression and activity were significantly upregulated in breast cancer tissues and a panel of cell lines compared to normal adjacent breast tissues and cell lines. β-glucosidase overexpression activated PI3K/Akt/mTOR signalling, leading to increased cell growth. In contrast, β-glucosidase inhibition by siRNA depletion and pharmacological approach using conduritol B epoxide (selective β-glucosidase inhibitor) suppressed growth and induced apoptosis in breast cancer cells. Importantly, β-glucosidase inhibition significantly sensitized breast cancer cells to chemotherapy in vitro and in vivo, suggesting that inhibiting β-glucosidase effectively targeted breast cancer cells that were resistant to elimination by chemotherapeutic agent alone. We demonstrated the positive role of β-glucosidase in breast cancer growth and survival. Our work also suggested that inhibiting β-glucosidase as a possible alternative therapeutic strategy to overcome chemoresistance in breast cancer.
Oncology Letters | 2018
Xin Hu; Xiao Zhou; Huawei Yang; Wei Wei; Yi Jiang; Jianlun Liu
The efficacy of axillary lymph node dissection (ALND) following sentinel lymph node biopsy (SLNB) has been questioned. The present study was performed to determine the sensitivity, specificity and accuracy of axillary ultrasound (US) and fine needle aspiration biopsy (FNAB) in the diagnosis of axillary metastases in patients with early breast cancer. A total of 214 patients with stage I and II breast cancer between June 2015 and January 2017 were included. All of the patients received axillary US as a primary investigation for lymph node status. US-guided FNAB was performed on suspicious lymph nodes. Those with non-suspicious and FNAB-negative axillary nodes proceeded to SLNB at the time of primary breast surgery. ALND was performed when the result of the US-guided FNAB was positive. The results of US and cytology were compared to histopathological results to determine their sensitivity, specificity, positive and negative predictive value and accuracy. A total of 76 out of 214 patients (35.5%) had axillary lymph node metastases at final histology. The sensitivity and specificity of axillary US alone were 59.2% (45/76) and 78.3% (108/138), respectively. Axillary US with FNAB identified 32 patients with positive lymph node metastases, and increased the sensitivity and specificity to 71.1% (32/45) and 100.0% (30/30). Combined with FNAB, the positive and negative predictive values were 100.0% (32/32) and 69.8% (30/43), respectively. Axillary US-alone or combined US/FNAB had a high accuracy rate and a satisfactory result as they cost less and it is easy to assess the status of axillary lymph nodes. Thus, axillary US with FNAB may avoid unnecessary SLNB in a significant number of patients.
Oncology Letters | 2018
Shicong Tang; Rirong Yang; Xin Zhou; Hong Pan; Jianlun Liu
Increased expression of Golgi phosphoprotein 3 (GOLPH3) has been reported to be associated with several types of human cancer. Patient-derived cancer xenograft models have demonstrated great potential in preclinical studies. In the present study, the link between GOLPH3 expression and survival was examined in patients with non-small cell lung cancer (NSCLC). Patient-derived lung cancer xenograft models were established with two different methods. Lastly, the association between GOLPH3 expression and establishment of the xenograft models was explored. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry analysis were used to examine GOLPH3 expression in 60 NSCLC tissues and matched adjacent non-cancerous tissues (ANT). In addition, tumor pieces from the 60 NSCLC tissues were implanted in the subcutaneous layer and in the subrenal kidney capsule of nude mice. RT-qPCR, histopathology and immunohistochemistry were used to confirm the human origin of the xenograft tumors. RT-qPCR was also used to research the mutation status of GOLPH3 in the xenograft tumors. The results demonstrated that NSCLC tissues had higher expression of GOLPH3, at the mRNA and protein level, compared with ANT. High expression of GOLPH3 correlated with poor survival in patients with NSCLC. Successful engraftment was established for 27 tissues in the subrenal kidney capsule and for 16 in the subcutaneous layer of nude mice. The subrenal kidney capsule group demonstrated significantly higher engraftment rates than the subcutaneous layer group. In addition, higher GOLPH3 expression in the tumor tissues was significantly correlated with higher engraftment rates in mice. In both groups, few xenografts lost the GOLPH3 mutation. In summary, GOLPH3 may be an important diagnosis and prognosis indicator in patients with NSCLC. The genotype and phenotype of the xenograft tumors derived from patient lung cancer tissues exhibited significant similarities to the originating primary tumors. High GOLPH3 expression may promote the successful establishment of xenograft models for NSCLC.
Mbio | 2018
Jia Zhu; Ming Liao; Ziting Yao; Wenying Liang; Qibin Li; Jianlun Liu; Huawei Yang; Yinan Ji; Wei Wei; Aihua Tan; Siyuan Liang; Yang Chen; Haisong Lin; Xiujuan Zhu; Shengzhu Huang; Jiarong Tian; Ruiqiang Tang; Qiuyan Wang; Zengnan Mo
BackgroundIncreasing evidence suggests that gut microbiota play a role in the pathogenesis of breast cancer. The composition and functional capacity of gut microbiota associated with breast cancer have not been studied systematically.MethodsWe performed a comprehensive shotgun metagenomic analysis of 18 premenopausal breast cancer patients, 25 premenopausal healthy controls, 44 postmenopausal breast cancer patients, and 46 postmenopausal healthy controls.ResultsMicrobial diversity was higher in breast cancer patients than in controls. Relative species abundance in gut microbiota did not differ significantly between premenopausal breast cancer patients and premenopausal controls. In contrast, relative abundance of 45 species differed significantly between postmenopausal patients and postmenopausal controls: 38 species were enriched in postmenopausal patients, including Escherichia coli, Klebsiella sp_1_1_55, Prevotella amnii, Enterococcus gallinarum, Actinomyces sp. HPA0247, Shewanella putrefaciens, and Erwinia amylovora, and 7 species were less abundant in postmenopausal patients, including Eubacterium eligens and Lactobacillus vaginalis. Acinetobacter radioresistens and Enterococcus gallinarum were positively but weakly associated with expression of high-sensitivity C-reactive protein; Shewanella putrefaciens and Erwinia amylovora were positively but weakly associated with estradiol levels. Actinomyces sp. HPA0247 negatively but weakly correlated with CD3+CD8+ T cell numbers. Further characterization of metagenome functional capacity indicated that the gut metagenomes of postmenopausal breast cancer patients were enriched in genes encoding lipopolysaccharide biosynthesis, iron complex transport system, PTS system, secretion system, and beta-oxidation.ConclusionThe composition and functions of the gut microbial community differ between postmenopausal breast cancer patients and healthy controls. The gut microbiota may regulate or respond to host immunity and metabolic balance. Thus, while cause and effect cannot be determined, there is a reproducible change in the microbiota of treatment-naive patients relative to matched controls.