Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianmin Zuo is active.

Publication


Featured researches published by Jianmin Zuo.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Host shutoff during productive Epstein–Barr virus infection is mediated by BGLF5 and may contribute to immune evasion

Martin Rowe; Britt A. Glaunsinger; Daphne van Leeuwen; Jianmin Zuo; David Sweetman; Don Ganem; Jaap M. Middeldorp; Emmanuel J. H. J. Wiertz; Maaike E. Ressing

Relatively little is known about immune evasion during the productive phase of infection by the γ1-herpesvirus Epstein–Barr virus (EBV). The use of a unique system to isolate cells in lytic cycle allowed us to identify a host shutoff function operating in productively EBV-infected B cells. This impairment of protein synthesis results from mRNA degradation induced upon expression of the early lytic-cycle gene product BGLF5. Recently, a γ2-herpesvirus, Kaposi sarcoma herpesvirus, has also been shown to encode a host shutoff function, indicating that host shutoff appears to be a general feature of γ-herpesviruses. One of the consequences of host shutoff is a block in the synthesis of HLA class I and II molecules, reflected by reduced levels of these antigen-presenting complexes at the surface of cells in EBV lytic cycle. This effect could lead to escape from T cell recognition and elimination of EBV-producing cells, thereby allowing generation of viral progeny in the face of memory T cell responses.


PLOS Pathogens | 2009

The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

Jianmin Zuo; Andrew Currin; Bryan D. Griffin; Claire Shannon-Lowe; Wendy A. Thomas; Maaike E. Ressing; Emmanuel J. H. J. Wiertz; Martin Rowe

Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 γ1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV γ2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed.


Seminars in Cancer Biology | 2008

Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products.

Maaike E. Ressing; Daniëlle Horst; Bryan D. Griffin; Judy Tellam; Jianmin Zuo; Rajiv Khanna; Martin Rowe; Emmanuel J. H. J. Wiertz

Upon primary infection, EBV establishes a latent infection in B cells, characterized by maintenance of the viral genome in the absence of viral replication. The Epstein-Barr Nuclear Antigen 1 (EBNA1) plays a crucial role in maintenance of the viral DNA episome and is consistently expressed in all EBV-associated malignancies. Compared to other EBV latent gene products, EBNA1 is poorly recognized by CD8(+) T lymphocytes. Recent studies are discussed that shed new light on the mechanisms that underlie this unusual lack of CD8(+) T cell activation. Whereas the latent phase is characterized by the expression of a limited subset of viral gene products, the full repertoire of over 80 EBV lytic gene products is expressed during the replicative phase. Despite this abundance of potential T cell antigens, which indeed give rise to a strong response of CD4(+) and CD8(+) T lymphocytes, the virus can replicate successfully. Evidence is accumulating that this paradoxical situation is the result of actions of multiple viral gene products, inhibiting discrete stages of the MHC class I and class II antigen presentation pathways. Immediately after initiation of the lytic cycle, BNLF2a prevents peptide-loading of MHC class I molecules through inhibition of the Transporter associated with Antigen Processing, TAP. This will reduce presentation of viral antigens by the large ER-resident pool of MHC class I molecules. Synthesis of new MHC class I molecules is blocked by BGLF5. Viral-IL10 causes a reduction in mRNA levels of TAP1 and bli/LMP2, a subunit of the immunoproteasome. MHC class I molecules present at the cell surface are downregulated by BILF1. Also the antigen presenting capacity of MHC class II molecules is severely compromised by multiple EBV lytic gene products, including gp42/gH/gL, BGLF5, and vIL-10. In this review, we discuss how concerted actions of these EBV lytic proteins result in highly effective interference with CD8(+) and CD4(+) T cell surveillance, thereby providing the virus with a window for undisturbed generation of viral progeny.


Journal of Virology | 2008

The DNase of Gammaherpesviruses Impairs Recognition by Virus-Specific CD8+ T Cells through an Additional Host Shutoff Function

Jianmin Zuo; Wendy A. Thomas; Daphne van Leeuwen; Jaap M. Middeldorp; Emmanuel J. H. J. Wiertz; Maaike E. Ressing; Martin Rowe

ABSTRACT The DNase/alkaline exonuclease (AE) genes are well conserved in all herpesvirus families, but recent studies have shown that the AE proteins of gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposis sarcoma-associated herpesvirus (KSHV) exhibit an additional function which shuts down host protein synthesis. One correlate of this additional shutoff function is that levels of cell surface HLA molecules are downregulated, raising the possibility that shutoff/AE genes of gammaherpesviruses might contribute to viral immune evasion. In this study, we show that both BGLF5 (EBV) and SOX (KSHV) shutoff/AE proteins do indeed impair the ability of virus-specific CD8+ T-cell clones to recognize endogenous antigen via HLA class I. Random mutagenesis of the BGLF5 gene enabled us to genetically separate the shutoff and AE functions and to demonstrate that the shutoff function was the critical factor determining whether BGLF5 mutants can impair T-cell recognition. These data provide further evidence that EBV has multiple mechanisms to modulate HLA class I-restricted T-cell responses, thus enabling the virus to replicate and persist in the immune-competent host.


Journal of Virology | 2011

The Epstein-Barr Virus-Encoded BILF1 Protein Modulates Immune Recognition of Endogenously Processed Antigen by Targeting Major Histocompatibility Complex Class I Molecules Trafficking on both the Exocytic and Endocytic Pathways

Jianmin Zuo; Laura L. Quinn; Jennifer Tamblyn; Wendy A. Thomas; Regina Feederle; Henri Jacques Delecluse; Andrew D. Hislop; Martin Rowe

ABSTRACT Despite triggering strong immune responses, Epstein-Barr virus (EBV) has colonized more than 90% of the adult human population. Successful persistence of EBV depends on the establishment of a balance between host immune responses and viral immune evasion. Here we have extended our studies on the EBV-encoded BILF1 protein, which was recently identified as an immunoevasin that functions by enhancing degradation of major histocompatibility complex class I (MHC-I) antigens via lysosomes. We now demonstrate that disruption of the EKT signaling motif of BILF1 by a K122A mutation impairs the ability of BILF1 to enhance endocytosis of surface MHC-I molecules, while subsequent lysosomal degradation was impaired by deletion of the 21-residue C-terminal tail of BILF1. Furthermore, we identified another mechanism of BILF1 immunomodulation: it targets newly synthesized MHC-I/peptide complexes en route to the cell surface. Importantly, although the diversion of MHC-I on the exocytic pathway caused a relatively modest reduction in cell surface MHC-I, presentation of endogenously processed target peptides to immune CD8+ effector T cells was reduced by around 65%. The immune-modulating functions of BILF1 in the context of the whole virus were confirmed in cells lytically infected with a recombinant EBV in which BILF1 was deleted. This study therefore extends our initial observations on BILF1 to show that this immunoevasin can target MHC-I antigen presentation via both the exocytic and endocytic trafficking pathways. The results also emphasize the merits of including functional T cell recognition assays to gain a more complete picture of immunoevasin effects on the antigen presentation pathway.


PLOS Pathogens | 2011

Epstein-Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2.

Jianmin Zuo; Wendy A. Thomas; Tracey A. Haigh; Leah Fitzsimmons; Heather M. Long; Andrew D. Hislop; Graham S. Taylor; Martin Rowe

Evasion of immune T cell responses is crucial for viruses to establish persistence in the infected host. Immune evasion mechanisms of Epstein-Barr virus (EBV) in the context of MHC-I antigen presentation have been well studied. In contrast, viral interference with MHC-II antigen presentation is less well understood, not only for EBV but also for other persistent viruses. Here we show that the EBV encoded BZLF1 can interfere with recognition by immune CD4+ effector T cells. This impaired T cell recognition occurred in the absence of a reduction in the expression of surface MHC-II, but correlated with a marked downregulation of surface CD74 on the target cells. Furthermore, impaired CD4+ T cell recognition was also observed with target cells where CD74 expression was downregulated by shRNA-mediated inhibition. BZLF1 downregulated surface CD74 via a post-transcriptional mechanism distinct from its previously reported effect on the CIITA promoter. In addition to being a chaperone for MHC-II αβ dimers, CD74 also functions as a surface receptor for macrophage Migration Inhibitory Factor and enhances cell survival through transcriptional upregulation of Bcl-2 family members. The immune-evasion function of BZLF1 therefore comes at a cost of induced toxicity. However, during EBV lytic cycle induced by BZLF1 expression, this toxicity can be overcome by expression of the vBcl-2, BHRF1, at an early stage of lytic infection. We conclude that by inhibiting apoptosis, the vBcl-2 not only maintains cell viability to allow sufficient time for synthesis and accumulation of infectious virus progeny, but also enables BZLF1 to effect its immune evasion function.


PLOS Pathogens | 2016

Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium.

Annette Pachnio; Miriam Ciáurriz; Jusnara Begum; Neeraj Lal; Jianmin Zuo; Andrew D Beggs; Paul Moss

Cytomegalovirus (CMV) infection elicits a very strong and sustained intravascular T cell immune response which may contribute towards development of accelerated immune senescence and vascular disease in older people. Virus-specific CD8+ T cell responses have been investigated extensively through the use of HLA-peptide tetramers but much less is known regarding CMV-specific CD4+ T cells. We used a range of HLA class II-peptide tetramers to investigate the phenotypic and transcriptional profile of CMV-specific CD4+ T cells within healthy donors. We show that such cells comprise an average of 0.45% of the CD4+ T cell pool and can reach up to 24% in some individuals (range 0.01–24%). CMV-specific CD4+ T cells display a highly differentiated effector memory phenotype and express a range of cytokines, dominated by dual TNF-α and IFN-γ expression, although substantial populations which express IL-4 were seen in some donors. Microarray analysis and phenotypic expression revealed a profile of unique features. These include the expression of CX3CR1, which would direct cells towards fractalkine on activated endothelium, and the β2-adrenergic receptor, which could permit rapid response to stress. CMV-specific CD4+ T cells display an intense cytotoxic profile with high level expression of granzyme B and perforin, a pattern which increases further during aging. In addition CMV-specific CD4+ T cells demonstrate strong cytotoxic activity against antigen-loaded target cells when isolated directly ex vivo. PD-1 expression is present on 47% of cells but both the intensity and distribution of the inhibitory receptor is reduced in older people. These findings reveal the marked accumulation and unique phenotype of CMV-specific CD4+ T cells and indicate how such T cells may contribute to the vascular complications associated with CMV in older people.


Microbes and Infection | 2010

Immune responses to Epstein-Barr virus: molecular interactions in the virus evasion of CD8+ T cell immunity.

Martin Rowe; Jianmin Zuo

Persistent viruses have mechanisms for modulating the host immune responses that are essential for achieving a lifelong virus–host balance while minimizing the viral pathogenicity. Here we review some of the immune-modulating mechanisms evolved by the ubiquitous but potentially oncogenic Epstein–Barr virus, with particular emphasis on the molecular mechanisms of genes interfering with HLA class I antigen presentation.


Blood | 2012

T-cell immunity to Kaposi sarcoma-associated herpesvirus: recognition of primary effusion lymphoma by LANA-specific CD4 T cells

Shereen Sabbah; Ya Jankey Jagne; Jianmin Zuo; Thushan I. de Silva; Mohammad M. Ahasan; Christian Brander; Sarah Rowland-Jones; Katie L. Flanagan; Andrew D. Hislop

T-cell immunity is important for controlling Kaposi sarcoma-associated herpesvirus (KSHV) diseases such as the endothelial cell malignancy Kaposi sarcoma, or the B-cell malignancy, primary effusion lymphoma (PEL). However, little is known about KSHV-specific T-cell immunity in healthy donors and immune control of disease. Using PBMCs from healthy KSHV-infected donors, we found weak ex vivo responses to the KSHV latent antigens LANA, vFLIP, vCyclin, and Kaposin, with LANA most frequently recognized. CD4(+) T-cell clones specific to LANA, a protein expressed in all KSHV-infected cells and malignancies, were established to determine whether they could recognize LANA-expressing cells. B-cell targets expressing or fed LANA protein were consistently recognized by the clones; however, most PEL cell lines were not. PELs express the KSHV protein vIRF3 that inhibits promoter function of the HLA class II transactivator, decreasing expression of genes controlled by this transactivator. Re-expressing the class II transactivator in the PELs increased expression of downstream targets such as HLA class II and restored recognition but not killing by the LANA-specific clones. We suggest that PELs are poorly controlled in vivo because of inefficient recognition and killing by T cells.


PLOS Pathogens | 2014

Cooperation between Epstein-Barr Virus Immune Evasion Proteins Spreads Protection from CD8 + T Cell Recognition across All Three Phases of the Lytic Cycle

Laura L. Quinn; Jianmin Zuo; Rachel J. M. Abbott; Claire Shannon-Lowe; Rosemary J. Tierney; Andrew D. Hislop; Martin Rowe

CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE<E<<L). Moreover, double-knockdown experiments showed that BILF1 and BNLF2a co-operate to further inhibit antigen presentation of L epitopes. Together, these data firstly indicate which potential immune-evasion functions are actually relevant in the context of lytic virus replication, and secondly identify lytic-cycle phase-specific effects that provide mechanistic insight into the immunodominance pattern seen for CD8+ T cell responses to EBV lytic antigens.

Collaboration


Dive into the Jianmin Zuo's collaboration.

Top Co-Authors

Avatar

Martin Rowe

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Paul Moss

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ram Malladi

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura L. Quinn

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge