Jianping Pan
Zhejiang University City College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianping Pan.
Molecular and Cellular Biochemistry | 2013
Dayong Zhang; Yu Pan; Chong Zhang; Bingxi Yan; Shanshan Yu; Dong-ling Wu; Meng-meng Shi; Kai Shi; Xin-xiao Cai; Shuang-shuang Zhou; Jun-bo Wang; Jianping Pan; Li-huang Zhang
Recent studies have demonstrated that the Wnt/β-catenin signaling plays an important role in stem cell aging. However, the mechanisms of cell senescence induced by Wnt/β-catenin signaling are still poorly understood. Our preliminary study has indicated that activated Wnt/β-catenin signaling can induce MSC aging. In this study, we reported that the Wnt/β-catenin signaling was a potent activator of reactive oxygen species (ROS) generation in MSCs. After scavenging ROS with N-acetylcysteine, Wnt/β-catenin signaling-induced MSC aging was significantly attenuated and the DNA damage and the expression of p16INK4A, p53, and p21 were reduced in MSCs. These results indicated that the Wnt/β-catenin signaling could induce MSC aging through promoting the intracellular production of ROS, and ROS may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling.
Journal of Cellular and Molecular Medicine | 2015
Chong Zhang; Jing Shi; Shi-ying Mao; Ya-si Xu; Dan Zhang; Lin-yi Feng; Bo Zhang; Youyou Yan; Si-cong Wang; Jianping Pan; You-ping Yang; Nengming Lin
Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated‐PIK3CA colorectal cancer, but not among patients with wild‐type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT‐737 in combination could induce a synergistic growth arrest in several human PIK3CA wild‐type cancer cells. In addition, our results also demonstrated that long‐term combination treatment with aspirin and ABT‐737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short‐term aspirin plus ABT‐737 combination treatment induced a greater autophagic response than did either drug alone and the combination‐induced autophagy switched from a cytoprotective signal to a death‐promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT‐737. Moreover, the increased anti‐cancer efficacy of aspirin combined with ABT‐737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy.
Acta Pharmacologica Sinica | 2013
Chong Zhang; Shuang-shuang Zhou; Lin-yi Feng; Dayong Zhang; Neng-ming Lin; Li-huang Zhang; Jianping Pan; Jun-bo Wang; Jie Li
Aim:To examine the anti-cancer effects of chamaejasmenin B and neochamaejasmin C, two biflavonones isolated from the root of Stellera chamaejasme L (known as the traditional Chinese herb Rui Xiang Lang Du) in vitro.Methods:Human liver carcinoma cell lines (HepG2 and SMMC-7721), a human non-small cell lung cancer cell line (A549), human osteosarcoma cell lines (MG63, U2OS, and KHOS), a human colon cancer cell line (HCT-116) and a human cervical cancer cell line (HeLa) were used. The anti-proliferative effects of the compounds were measured using SRB cytotoxicity assay. DNA damage was detected by immunofluorescence and Western blotting. Apoptosis and cell cycle distribution were assessed using flow cytometry analysis. The expression of the related proteins was examined with Western blotting analysis.Results:Both chamaejasmenin B and neochamaejasmin C exerted potent anti-proliferative effects in the 8 human solid tumor cell lines. Chamaejasmenin B (the IC50 values ranged from 1.08 to 10.8 μmol/L) was slightly more potent than neochamaejasmin C (the IC50 values ranged from 3.07 to 15.97 μmol/L). In the most sensitive A549 and KHOS cells, the mechanisms underlying the anti-proliferative effects were characterized. The two compounds induced prominent expression of the DNA damage marker γ-H2AX as well as apoptosis. Furthermore, treatment of the cells with the two compounds caused prominent G0/G1 phase arrest.Conclusion:Chamaejasmenin B and neochamaejasmin C are potential anti-proliferative agents in 8 human solid tumor cell lines in vitro via inducing cell cycle arrest, apoptosis and DNA damage.
Oxidative Medicine and Cellular Longevity | 2015
Dayong Zhang; Bingxi Yan; Shanshan Yu; Chong Zhang; Baoming Wang; Yayan Wang; Jun-bo Wang; Zhanggen Yuan; Li-huang Zhang; Jianping Pan
Increasing evidences indicate that reactive oxygen species are the main factor promoting stem cell aging. Recent studies have demonstrated that coenzyme Q10 (CoQ10) plays a positive role in organ and cellular aging. However, the potential for CoQ10 to protect stem cell aging has not been fully evaluated, and the mechanisms of cell senescence inhibited by CoQ10 are still poorly understood. Our previous study had indicated that D-galactose (D-gal) can remarkably induce mesenchymal stem cell (MSC) aging through promoting intracellular ROS generation. In this study, we showed that CoQ10 could significantly inhibit MSC aging induced by D-gal. Moreover, in the CoQ10 group, the expression of p-Akt and p-mTOR was clearly reduced compared with that in the D-gal group. However, after Akt activating by CA-Akt plasmid, the senescence-cell number in the CoQ10 group was significantly higher than that in the control group. These results indicated that CoQ10 could inhibit D-gal-induced MSC aging through the Akt/mTOR signaling.
Oncology Reports | 2015
Ruiling Chen; Shengchao Wang; Yunliang Yao; Yun Zhou; Chong Zhang; Jie Fang; Dayong Zhang; Li-huang Zhang; Jianping Pan
Vascular endothelial growth factor receptor 2 (VEGFR2)-mediated signaling is the key rate-limiting step in angiogenesis. VEGFR2 serves as the most important target of anti-angiogenic therapy for cancers. Single-chain trimer (SCT) comprising antigen peptide, β2-microglobulin (β2m), and major histocompatibility complex (MHC) class I heavy chain was a particularly powerful strategy involved in the increase of the potency of DNA vaccine against tumors and infections. In the present study, we constructed an SCT-encoding VEGFR2 antigen peptide [aa400-408, also known as kinase insert domain-containing receptor (KDR2)], β2m, and mouse MHC class I heavy chain H-2Db [pcDNA3.1(+)-KDR2-β2m-H-2Db, or SCT-KDR2]. The constructed SCT-KDR2 DNA was efficiently expressed in the human A293 embryonic kidney cell line. Intradermal immunization of C57BL/6 mice with SCT-KDR2 DNA was able to successfully break self-immunological tolerance and induce robust cytotoxic T‑lymphocyte (CTL) response to VEGFR2, leading to marked suppression of tumor cell‑induced angiogenesis and metastasis in murine models of B16 melanoma and 3LL Lewis lung carcinoma. Taken together, the results showed that VEGFR2-targeted SCT vaccination is an effective modality that can be utilized in anti-angiogenic active immunotherapy for various types of cancer.
Medical Oncology | 2016
Yang-ling Li; Yi-ni Pan; Wen-jue Wu; Shi-ying Mao; Jiao Sun; Yi-ming Zhao; Jing-yin Dong; Dayong Zhang; Jianping Pan; Chong Zhang; Nengming Lin
Erlotinib is effective in NSCLC patients with known drug-sensitizing EGFR mutations, but its clinical efficacy in patients with wild-type EGFR or acquired resistance to erlotinib remains modest. Evodiamine is a chemical extracted from the Evodia rutaecarpa (Juss.) Benth, we showed that evodiamine could induce anti-proliferation and apoptosis in four wild-type EGFR NSCLC cell lines, and combining evodiamine with erlotinib might successfully inhibit cell proliferation and survival in wild-type EGFR NSCLC cells, characterized as erlotinib-resistant. In addition, evodiamine plus erlotinib significantly increased the apoptotic rate of NSCLC cells, as compared to single agent treatment alone. Further investigation of the mechanism underlying these effects revealed that evodiamine plus erlotinib might downregulate Mcl-1 expression through the mTOR/S6K1 control of its translation. Thus, our study has revealed evodiamine as a pertinent sensitizer to erlotinib and the strategy of combining erlotinib with evodiamine appears to be an attractive option for reversing resistance to erlotinib.
Evidence-based Complementary and Alternative Medicine | 2016
Junping Guo; Lijun Wang; Linyao Wang; Senmi Qian; Dayong Zhang; Jie Fang; Jianping Pan
Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS-) induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the molecular mechanisms mediating the effect. The effects of berberine on LPS-induced cell apoptosis and viability were measured with 5-ethynyl-2′-deoxyuridine staining, flow cytometry, and Cell Counting Kit-8 assays. The expression and/or activation of proapoptotic and antiapoptotic proteins or signaling pathways, including caspase-3, poly(ADP-ribose) polymerase, myeloid cell leukemia-1 (MCL-1), p38 mitogen-activated protein kinase, C-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase, were determined with western blotting. The malondialdehyde levels, superoxide dismutase (SOD) activity, and production of proinflammatory cytokines were measured with enzyme-linked immunosorbent assays. The results demonstrated that berberine pretreatment protected HUVECs from LPS-induced apoptosis, attenuated LPS-induced injury, inhibited LPS-induced JNK phosphorylation, increased MCL-1 expression and SOD activity, and decreased proinflammatory cytokine production. The effects of berberine on LPS-treated HUVECs were prevented by SP600125, a JNK-specific inhibitor. Thus, berberine might be a potential candidate in the treatment of endothelial cell injury-related vascular diseases.
Molecular Medicine Reports | 2017
Dayong Zhang; Huifei Lu; Zhongxing Chen; Yayan Wang; Jiuzhou Lin; Shan Xu; Chong Zhang; Baoming Wang; Zhanggen Yuan; Xiao Feng; Xuefan Jiang; Jianping Pan
It has previously been demonstrated that glucose is important in the process of stem cell aging. However, the mechanisms of cell senescence induced by high glucose (HG) remain to be elucidated. The preliminary study indicated that D-galactose induced mesenchymal stem cell (MSCs) aging. The present study demonstrated, following treatment with 11.0 or 22.0 mM HG for 14 days, that HG significantly promoted MSCs aging and the expression levels of phosphorylated (p-)phosphatidylinositol 3-kinase/protein kinase B (Akt) and p-mammalian target of rapamycin signaling (mTOR) in the HG groups were increased compared with the control group. However, following Akt inhibition with 1.0 or 10.0 nM MK-2206, which is an Akt-specific small molecule inhibitor, the senescence-cell value in the HG group was significantly decreased compared with the control group. These results indicated that HG induced MSCs senescence and this effect was primarily mediated via the Akt/mTOR signaling pathway.
Oncology Reports | 2013
Chong Zhang; Shuang-shuang Zhou; Xiang-Rong Li; Baoming Wang; Neng-ming Lin; Lin-yi Feng; Dayong Zhang; Li-huang Zhang; Jun-bo Wang; Jianping Pan
The present study showed that the combination of dasatinib and combretastatin A-4 (CA-4) exhibited synergistic cytotoxicity in multiple types of cancer, including ovarian, hepatocellular, lung and prostate carcinoma. The enhanced apoptosis induced by dasatinib plus CA-4 was accompanied by a greater extent of mitochondrial depolarization, caspase-3 activation and PARP cleavage in HO-8910 cells. Furthermore, elevated expression of Mcl-1 led to a reduced apoptosis induced by dasatinib plus CA-4, highlighting that downregulated Mcl-1 was necessary for the potentiating effect of dasatinib to CA-4-triggered apoptosis. A clear increase in γ-H2AX expression was observed in the dasatinib+CA-4 group compared with the mono-treatment groups, indicating that dasatinib plus CA-4 may induce double-strand breaks (DSBs) in HO-8910 cells. Moreover, the increased anticancer efficacy of dasatinib combined with CA-4 was further validated in a human HO-8910 ovarian cancer xenograft model in nude mice. Our study is the first to show that the combination of dasatinib with CA-4 could be a novel and promising therapeutic approach for the treatment of cancer.
Molecular Medicine Reports | 2017
Yujie He; Jie Fang; Chong Zhang; Jun Pan; Qi Jin; Yingzhi Yang; Linyao Wang; Baoming Wang; Dayong Zhang; Jianping Pan