Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianqiang Zhu is active.

Publication


Featured researches published by Jianqiang Zhu.


Physical Review Letters | 2012

Plasmoid Ejection and Secondary Current Sheet Generation from Magnetic Reconnection in Laser-Plasma Interaction

Q. L. Dong; S. Wang; Quanming Lu; Can Huang; Dawei Yuan; Xufeng Liu; X. X. Lin; Yu-Tong Li; Huigang Wei; Jiayong Zhong; Shi; Shuqing Jiang; Yongkun Ding; Jiang Bb; Kai Du; X. T. He; M. Y. Yu; Cheng Liu; S. J. Wang; Yong-Jian Tang; Jianqiang Zhu; G. Zhao; Z. M. Sheng; Jie Zhang

Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.


New Journal of Physics | 2011

Collisionless shockwaves formed by counter-streaming laser-produced plasmas

Xuchun Liu; Y. T. Li; Y. Zhang; Jiayong Zhong; W. D. Zheng; Q. L. Dong; Min Chen; Gang Zhao; Youichi Sakawa; T. Morita; Y. Kuramitsu; Tsunehiko N. Kato; Li-Juan Chen; X. R. Lu; Juan Ma; Wei Wang; Z. M. Sheng; H. Takabe; Y. J. Rhee; Yongkun Ding; Shaoen Jiang; S. Y. Liu; Jianqiang Zhu; Jie Zhang

The interaction between two counter-streaming laser-produced plasmas is investigated using the high-power Shenguang II laser facility. The shockwaves observed in our experiment are believed to be excited by collisionless mechanisms. The dimensionless parameters calculated with the results suggest that it is possible to scale the observation to the supernova remnants using transformation and similarity criteria.


Applied Physics Letters | 2015

Strong magnetic fields generated with a simple open-ended coil irradiated by high power laser pulses

Beibei Zhu; Yi Li; Dawei Yuan; Yifei Li; Fang Li; Guoqian Liao; J. R. Zhao; Jia-Yong Zhong; F. B. Xue; Shukai He; Weiwu Wang; Feng Lu; Faqiang Zhang; Lei Yang; Kainan Zhou; Na Xie; Wei Hong; Huigang Wei; Kai Zhang; Bo Han; Xiaoxing Pei; Chang Liu; Z. D. Zhang; W. M. Wang; Jianqiang Zhu; Y. Q. Gu; Zongqing Zhao; B. H. Zhang; G. Zhao; Jie Zhang

A simple scheme to produce strong magnetic fields due to cold electron flow in an open-ended coil heated by high power laser pulses is proposed. It differs from previous generation of magnetic fields driven by fast electron current in a capacitor-coil target [S. Fujioka et al., Sci. Rep. 3, 1170 (2013)]. The fields in our experiments are measured by B-dot detectors and proton radiography, respectively. A 205 T strong magnetic field at the center of the coil target is generated in the free space at Iλ2 of 6.85 × 1014 W cm−2 μm2, where I is the laser intensity, and λ is the laser wavelength. The magnetic field strength is proportional to Iλ2. Compared with the capacitor-coil target, the generation mechanism of the magnetic field is straightforward and the coil is easy to be fabricated.


Astrophysical Journal Supplement Series | 2016

Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare

J. Y. Zhong; J. Lin; Yi Li; X. G. Wang; Y. T. Li; Kai Zhang; Dawei Yuan; Y. L. Ping; Huigang Wei; J.Q. Wang; LuNing Su; F. Li; Bo Han; Guoqian Liao; Chuanlei Yin; Yuan Fang; Xiaohui Yuan; C. Wang; J. R. Sun; G. Y. Liang; Feilu Wang; Y. K. Ding; X. T. He; Jianqiang Zhu; Zheng-Ming Sheng; Gang Li; Gang Zhao; Zhang J

Laboratory experiments have been carried out to model the magnetic reconnection process in a solar flare with powerful lasers. Relativistic electrons with energy up to megaelectronvolts are detected along the magnetic separatrices bounding the reconnection outflow, which exhibit a kappa-like distribution with an effective temperature of ~109 K. The acceleration of non-thermal electrons is found to be more efficient in the case with a guide magnetic field (a component of a magnetic field along the reconnection-induced electric field) than in the case without a guide field. Hardening of the spectrum at energies ≥500 keV is observed in both cases, which remarkably resembles the hardening of hard X-ray and γ-ray spectra observed in many solar flares. This supports a recent proposal that the hardening in the hard X-ray and γ-ray emissions of solar flares is due to a hardening of the source-electron spectrum. We also performed numerical simulations that help examine behaviors of electrons in the reconnection process with the electromagnetic field configurations occurring in the experiments. The trajectories of non-thermal electrons observed in the experiments were well duplicated in the simulations. Our numerical simulations generally reproduce the electron energy spectrum as well, except for the hardening of the electron spectrum. This suggests that other mechanisms such as shock or turbulence may play an important role in the production of the observed energetic electrons.


Scientific Reports | 2016

A novel laser-collider used to produce monoenergetic 13.3 MeV (7)Li (d, n) neutrons.

J. R. Zhao; Xing Zhang; Dawei Yuan; Y. T. Li; D. Z. Li; Y. J. Rhee; Ze Zhang; Fang Li; Baoqiang Zhu; Yan F. Li; Bo Han; Chang Liu; Yi-Tong Ma; Yi F. Li; M. Z. Tao; Menglong Li; Xin Guo; Xiuguang Huang; Sizu Fu; Jianqiang Zhu; G. Zhao; L. M. Chen; Changbo Fu; Jie Zhang

Neutron energy is directly correlated with the energy of the incident ions in experiments involving laser-driven nuclear reactions. Using high-energy incident ions reduces the energy concentration of the generated neutrons. A novel “laser-collider” method was used at the Shenguang II laser facility to produce monoenergetic neutrons via 7Li (d, n) nuclear reactions. The specially designed K-shaped target significantly increased the numbers of incident d and Li ions at the keV level. Ultimately, 13.3 MeV neutrons were obtained. Considering the time resolution of the neutron detector, we demonstrated that the produced neutrons were monoenergetic. Interferometry and a Multi hydro-dynamics simulation confirmed the monoenergetic nature of these neutrons.


Review of Scientific Instruments | 2015

Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target.

J. R. Zhao; Xiaopeng Zhang; Dawei Yuan; L. M. Chen; Y. T. Li; Changbo Fu; Y. J. Rhee; Fang Li; Baoqiang Zhu; Yan. F. Li; Guoqian Liao; Kai Zhang; Bo Han; Chang Liu; Kai Huang; Y. Y. Ma; Yi. F. Li; J. Xiong; Xiuguang Huang; Sizu Fu; Jianqiang Zhu; G. Zhao; Jie Zhang

Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10(6)) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.


Scientific Reports | 2017

Formation and evolution of a pair of collisionless shocks in counter-streaming flows

Dawei Yuan; Yu-Tong Li; Meng Liu; Jiayong Zhong; Baojun Zhu; Yanfei Li; Huigang Wei; Bo Han; Xiaoxing Pei; Jiarui Zhao; Fang Li; Zhe Zhang; G. Y. Liang; Feilu Wang; Su-Ming Weng; Yingjun Li; Shaoen Jiang; Kai Du; Yongkun Ding; Baoqiang Zhu; Jianqiang Zhu; Gang Zhao; Jie Zhang

A pair of collisionless shocks that propagate in the opposite directions are firstly observed in the interactions of laser-produced counter-streaming flows. The flows are generated by irradiating a pair of opposing copper foils with eight laser beams at the Shenguang-II (SG-II) laser facility. The experimental results indicate that the excited shocks are collisionless and electrostatic, in good agreement with the theoretical model of electrostatic shock. The particle-in-cell (PIC) simulations verify that a strong electrostatic field growing from the interaction region contributes to the shocks formation. The evolution is driven by the thermal pressure gradient between the upstream and the downstream. Theoretical analysis indicates that the strength of the shocks is enhanced with the decreasing density ratio during both flows interpenetration. The positive feedback can offset the shock decay process. This is probable the main reason why the electrostatic shocks can keep stable for a longer time in our experiment.


Chinese Physics B | 2017

Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle*

Yanfei Li; Yutong Li; Dawei Yuan; Li Fang; Baojun Zhu; Zhe Zhang; J. Y. Zhong; Han Bo; Huigang Wei; Xiaoxing Pei; Jiarui Zhao; Chang Liu; Xiaoxia Yuan; Guoqian Liao; Yong-Joo Rhee; Xin Lu; Neng Hua; Baoqiang Zhu; Jianqiang Zhu; Zhiheng Fang; Xiuguang Huang; Sizu Fu; Zhao Gang; Jie Zhang

A bow shock is formed in the interaction of a high-speed laser-driven plasma cloud with a cylinder obstacle. Its temporal and spatial structures are observed by shadowgraphy and interferometry. The width of the shock transition region is ~ 50 μm, comparable to the ion–ion collision mean free path, which indicates that collision is dominated in the shock probably. The Mach-number of the ablating plasma cloud is ~ 15 at first, and decreases with time resulting in a changing shock structure. A two-dimension hydrodynamics code, USim, is used to simulate the interaction process. The simulated shocks can well reproduce the observed.


Chinese Physics B | 2016

Filamentation instability in two counter-streaming laser plasmas*

Hui Liu; Quan-Li Dong; Dawei Yuan; Xun Liu; Neng Hua; Zhanfeng Qiao; Baoqiang Zhu; Jianqiang Zhu; Bo-Bin Jiang; Kai Du; Yong-Jian Tang; Gang Zhao; Xiaohui Yuan; Zheng-Ming Sheng; Jie Zhang

The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with 1ns-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.


Nature Physics | 2010

Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers

Jiayong Zhong; Yu-Tong Li; Xiaogang Wang; Jiaqi Wang; Quan-Li Dong; Chijie Xiao; Shoujun Wang; Xun Liu; Lei Zhang; Lin An; Feilu Wang; Jianqiang Zhu; Yuan Gu; X. T. He; Gang Zhao; Jie Zhang

Collaboration


Dive into the Jianqiang Zhu's collaboration.

Top Co-Authors

Avatar

Jie Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dawei Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gang Zhao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Huigang Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bo Han

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Fang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiayong Zhong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongkun Ding

China Academy of Engineering Physics

View shared research outputs
Top Co-Authors

Avatar

Guoqian Liao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kai Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge