Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianqin Ye is active.

Publication


Featured researches published by Jianqin Ye.


Annals of Neurology | 2010

Endothelial progenitor cell transplantation improves long‐term stroke outcome in mice

Yongfeng Fan; Fanxia Shen; Tim Frenzel; Wei Zhu; Jianqin Ye; Jianrong Liu; Yongmei Chen; Hua Su; William L. Young; Guo-Yuan Yang

Endothelial progenitor cells (EPCs) play an important role in tissue repairing and regeneration in ischemic organs, including the brain. However, the cause of EPC migration and the function of EPCs after ischemia are unclear. In this study, we demonstrated the effects of EPCs on ischemic brain injury in a mouse model of transient middle cerebral artery occlusion (tMCAO).


Journal of Cerebral Blood Flow and Metabolism | 2008

Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro

Yongfeng Fan; Jianqin Ye; Fanxia Shen; Yiqian Zhu; Yerem Yeghiazarians; Wei Zhu; Yongmei Chen; Michael T. Lawton; William L. Young; Guo-Yuan Yang

Circulating blood endothelial progenitor cells (EPCs) contribute to postnatal vasculogenesis, providing a novel therapeutic target for vascular diseases. However, the molecular mechanism of EPC-induced vasculogenesis is unknown. Interleukin-6 plays multiple functions in angiogenesis and vascular remodeling. Our previous study demonstrated that the polymorphism (174G > C) in IL-6 gene promoter was associated with brain vascular disease. In this study, we investigated if IL-6 receptor is expressed in human EPCs derived from circulating mononuclear cells, and if interleukin-6 (IL-6) stimulates EPC angiogenesis in vitro. First, we isolated and cultured mononuclear cells from adult human circulating blood. We obtained EPC clones that were further cultured and expended for the angiogenesis study. We found that the EPCs possessed human mature endothelial cell phenotypes; however, they proliferated much faster than mature endothelial cells (P <0.05). We then found that IL-6 receptor (gp-80) was expressed in the EPCs, and that administration of IL-6 could activate receptor gp80/gp130 signaling pathways including downstream extracellular signal-regulated kinase 1/2 and STAT3 phosphorylation in EPCs. Furthermore, IL-6 stimulated EPC proliferation, migration, and matrigel tube formation in a dose-dependent manner (P <0.05); anti-IL-6 antibodies or IL-6 receptor could abolish these effects (P <0.05). These results suggest that IL-6 plays a crucial role in the biologic behavior of blood-derived EPCs, which may help clarify the mechanism of IL-6 inflammatory-related diseases.


Biochemical and Biophysical Research Communications | 2008

VEGF improves survival of mesenchymal stem cells in infarcted hearts

Jennifer Pons; Yu Huang; Janice Arakawa-Hoyt; Daniel Washko; Junya Takagawa; Jianqin Ye; William Grossman; Hua Su

Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infarcted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16(INK), p21 and p19(ARF). VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.


Molecular Therapy | 2009

Injection of bone marrow cell extract into infarcted hearts results in functional improvement comparable to intact cell therapy.

Yerem Yeghiazarians; Yan Zhang; Megha Prasad; Henry Shih; Shereen A. Saini; Junya Takagawa; Richard E. Sievers; Maelene L. Wong; Neel K. Kapasi; Rachel Mirsky; Juha W. Koskenvuo; Petros Minasi; Jianqin Ye; Mohan N. Viswanathan; Franca S. Angeli; Andrew J. Boyle; Matthew L. Springer; William Grossman

We compared therapeutic benefits of intramyocardial injection of unfractionated bone marrow cells (BMCs) versus BMC extract as treatments for myocardial infarction (MI), using closed-chest ultrasound-guided injection at a clinically relevant time post-MI. MI was induced in mice and the animals treated at day 3 with either: (i) BMCs from green fluorescent protein (GFP)-expressing mice (n = 14), (ii) BMC extract (n = 14), or (iii) saline control (n = 14). Six animals per group were used for histology at day 6 and the rest followed to day 28 for functional analysis. Ejection fraction was similarly improved in the BMC and extract groups versus control (40.6 +/- 3.4 and 39.1 +/- 2.9% versus 33.2 +/- 5.0%, P < 0.05) with smaller scar sizes. At day 6 but not day 28, both therapies led to significantly higher capillary area and number of arterioles versus control. At day 6, BMCs increased the number of cycling cardiomyocytes (CMs) versus control whereas extract therapy resulted in significant reduction in the number of apoptotic CMs at the border zone (BZ) versus control. Intracellular components within BMCs can enhance vascularity, reduce infarct size, improve cardiac function, and influence CM apoptosis and cycling early after therapy following MI. Intact cells are not necessary and death of implanted cells may be a major component of the benefit.


Experimental Gerontology | 2011

Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy

Andrew J. Boyle; Henry Shih; Joy Hwang; Jianqin Ye; Brian Lee; Yan Zhang; David S. Kwon; Kristine Jun; Daiwei Zheng; Rich Sievers; Franca S. Angeli; Yerem Yeghiazarians; Randall J. Lee

Aging is associated with an increased incidence of heart failure, but the existence of an age-related cardiomyopathy remains controversial. Differences in strain, age and technique of measuring cardiac function differ between experiments, confounding the interpretation of these studies. Additionally, the structural and genetic profile at the onset of heart failure has not been extensively studied. We therefore performed serial echocardiography, which allows repeated assessment of left ventricular (LV) function, on a cohort of the same mice every 3 months as they aged and demonstrated that LV systolic dysfunction becomes apparent at 18 months of age. These aging animals had left ventricular hypertrophy and fibrosis, but did not have inducible ventricular tachyarrhythmias. Gene expression profiling of left ventricular tissue demonstrated 40 differentially expressed probesets and 36 differentially expressed gene ontology terms, largely related to inflammation and immunity. At this early stage of cardiac dysfunction, we observed increased cardiomyocyte expression of the pro-apoptotic activated caspase-3, but no actual increase in apoptosis. The aging hearts also have higher levels of anti-apoptotic and autophagic factors, which may have rendered protection from apoptosis. In conclusion, we describe the functional, structural and genetic changes in murine hearts as they first develop cardiomyopathy of aging.


PLOS ONE | 2012

Sca-1+cardiosphere-derived cells are enriched for isl1-expressing cardiac precursors and improve cardiac function after myocardial injury

Jianqin Ye; Andrew J. Boyle; Henry Shih; Richard E. Sievers; Yan Zhang; Megha Prasad; Hua Su; Yan Zhou; William Grossman; Harold S. Bernstein; Yerem Yeghiazarians

Background Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI). However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs) have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. Methodology/Principal Finding Using “middle aged” mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1+CD45- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1) in Sca-1+CD45- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1+CD45- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. Conclusions/Significance These studies demonstrate that cloned Sca-1+CD45- cells derived from CSs from infarcted “middle aged” hearts are enriched for second heart field (i.e., Isl-1+) precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.


Biomaterials | 2015

Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels.

Amit K. Jha; Kevin M. Tharp; Jianqin Ye; Jorge L. Santiago-Ortiz; Wesley M. Jackson; Andreas Stahl; David V. Schaffer; Yerem Yeghiazarians; Kevin E. Healy

We have generated a bioinspired tunable system of hyaluronic acid (HyA)-based hydrogels for Matrix-Assisted Cell Transplantation (MACT). With this material, we have independently evaluated matrix parameters such as adhesion peptide density, mechanical properties, and growth factor sequestering capacity, to engineer an environment that imbues donor cells with a milieu that promotes survival and engraftment with host tissues after transplantation. Using a versatile population of Sca-1(+)/CD45(-) cardiac progenitor cells (CPCs), we demonstrated that the addition of heparin in the HyA hydrogels was necessary to coordinate the presentation of TGFβ1 and to support the trophic functions of the CPCs via endothelial cell differentiation and vascular like tubular network formation. Presentation of exogenous TGFβ1 by binding with heparin improved differentiated CPC function by sequestering additional endogenously-produced angiogenic factors. Finally, we demonstrated that TGFβ1 and heparin-containing HyA hydrogels can promote CPC survival when implanted subcutaneously into murine hind-limbs and encouraged their participation in the ensuing neovascular response, which included blood vessels that had anastomosed with the hosts blood vessels.


Gene Therapy | 2006

AAV serotype-1 mediates early onset of gene expression in mouse hearts and results in better therapeutic effect

Hua Su; Yu Huang; Junya Takagawa; Alicia Bárcena; Janice Arakawa-Hoyt; Jianqin Ye; William Grossman; Yuet Wai Kan

Adeno-associated viral vectors (AAV) are attractive tool for gene therapy for coronary artery disease. However, gene expression in myocardium mediated by AAV serotype 2 (AAV2) does not peak until 4–6 weeks after gene transfer. This delayed gene expression may reduce its therapeutic potential for acute cardiac infarction. To determine whether earlier gene expression and better therapeutic effect could be achieved using a different serotype, CMV promoter driving the EPO gene (AAV-EPO) was packaged into AAV serotypes 1–5 capsids and injected into mouse myocardium. EPO expression was studied by measuring the hematocrits and EPO mRNA. After we found that AAV1 mediates the highest gene expression after 4 days of gene transduction, AAV-LacZ (CMV promoter driving LacZ gene expression) and MLCVEGF (hypoxia-inducible and cardiac-specific VEGF expression) were packaged into AAV1 and 2 capsids. LacZ expression was detected in AAV1-LacZ but not in AAV2-LacZ-injected hearts 1 day after vector injection. Compared to AAV2-MLCVEGF that mediated no significant VEGF expression, AAV1-MLCVEGF mediated 13.7-fold induction of VEGF expression in ischemic hearts 4 days after gene transduction and resulted in more neovasculatures, better cardiac function and less myocardial fibrosis. Thus, AAV1 mediates earlier and higher transgene expression in myocardium and better therapeutic effects.


Journal of Gene Medicine | 2009

Combining angiogenic gene and stem cell therapies for myocardial infarction

Jennifer Pons; Yu Huang; Junya Takagawa; Janice Arakawa-Hoyt; Jianqin Ye; William Grossman; Yuet Wai Kan; Hua Su

Transplantation of stem cells from various sources into infarcted hearts has the potential to promote myocardial regeneration. However, the regenerative capacity is limited partly as a result of the low survival rate of the transplanted cells in the ischemic myocardium. In the present study, we tested the hypothesis that combining cell and angiogenic gene therapies would provide additive therapeutic effects via co‐injection of bone marrow‐derived mesenchymal stem cells (MSCs) with an adeno‐associated viral vector (AAV), MLCVEGF, which expresses vascular endothelial growth factor (VEGF) in a cardiac‐specific and hypoxia‐inducible manner.


Journal of Controlled Release | 2015

Molecular Weight and Concentration of Heparin in Hyaluronic Acid-based Matrices Modulates Growth Factor Retention Kinetics and Stem Cell Fate

Amit K. Jha; Anurag Mathur; Felicia L. Svedlund; Jianqin Ye; Yerem Yeghiazarians; Kevin E. Healy

Growth factors are critical for regulating and inducing various stem cell functions. To study the effects of growth factor delivery kinetics and presentation on stem cell fate, we developed a series of heparin-containing hyaluronic acid (HyA)-based hydrogels with various degrees of growth factor affinity and retention. To characterize this system, we investigated the effect of heparin molecular weight, fractionation, and relative concentration on the loading efficiency and retention kinetics of TGFβ1 as a model growth factor. At equal concentrations, high MW heparin both loaded and retained the greatest amount of TGFβ1, and had the slowest release kinetics, primarily due to the higher affinity with TGFβ1 compared to low MW or unfractionated heparin. Subsequently, we tested the effect of TGFβ1, presented from various heparin-containing matrices, to differentiate a versatile population of Sca-1(+)/CD45(-) cardiac progenitor cells (CPCs) into endothelial cells and form vascular-like networks in vitro. High MW heparin HyA hydrogels stimulated more robust differentiation of CPCs into endothelial cells, which formed vascular-like networks within the hydrogel. This observation was attributed to the ability of high MW heparin HyA hydrogels to sequester endogenously synthesized angiogenic factors within the matrix. These results demonstrate the importance of molecular weight, fractionation, and concentration of heparin on presentation of heparin-binding growth factors and their effect on stem cell differentiation and lineage specification.

Collaboration


Dive into the Jianqin Ye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Shih

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Hua Su

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joy Hwang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yu Huang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge