Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianqiong Zhu is active.

Publication


Featured researches published by Jianqiong Zhu.


Clinical Cancer Research | 2008

Reduced hGC-1 Protein Expression Is Associated with Malignant Progression of Colon Carcinoma

Wenli Liu; Yueqin Liu; Jianqiong Zhu; Elizabeth C. Wright; Ivan Ding; Griffin P. Rodgers

Purpose: hGC-1 (human granulocyte colony–stimulating factor–stimulated clone 1) is a gastrointestinal protein that is a member of the olfactomedin glycoprotein family. Its biological function remains poorly understood. Aberrant expression of hGC-1 in some human carcinomas has been recently reported. The purpose of this study was to examine hGC-1 expression in colon carcinoma and explore the relationship between hGC-1 expression and the clinicopathologic features of patients with colon cancer. Experimental Design: The expression of hGC-1 in colon adenocarcinoma tissues was examined by dot-blot analysis, in situ hybridization, and immunohistochemistry. The association of hGC-1 expression pattern with patient differentiation grade, tumor stage, metastasis, and survival were examined. To further investigate the involvement of hGC-1 in colon cancer progression, human colon carcinoma (HT-29) cells overexpressing hGC-1 were established and cell proliferation, adhesion, and migration were studied. Results: Compared with normal colon mucosa, the up-regulation of hGC-1 was more frequently detected in more differentiated colon cancers, whereas down-regulation or no expression was associated with poorly differentiated colon cancers. Interestingly, hGC-1 down-regulation was also found in late tumor-node-metastasis stage, metastasis, and in patients with shorter survival. The morphology and cortical actin distribution of HT-29 cells were altered by hGC-1 overexpression. However, this did not change cell proliferation, but decreased cell adhesion and migration. Conclusion: Our findings indicate that hGC-1 is involved in colon cancer adhesion and metastasis, and that hGC-1 may be a useful marker for tumor differentiation and progression of human colon carcinoma.


Histopathology | 2007

Expression of hGC-1 is correlated with differentiation of gastric carcinoma

Wenli Liu; Jianqiong Zhu; L Cao; Griffin P. Rodgers

Aims:  The human G‐CSF‐stimulated clone‐1 (hGC‐1) gene encodes a 510‐amino acid olfactomedin‐related glycoprotein whose exact in vivo localization and function still remain elusive. The aim of this study was to demonstrate hGC‐1 protein localization in the normal human gastrointestinal tract and to explore further a potential relationship between hGC‐1 expression and gastric carcinoma.


British Journal of Haematology | 2008

Fetal haemoglobin response to hydroxycarbamide treatment and sar1a promoter polymorphisms in sickle cell anaemia

Chutima Kumkhaek; Vi James G. Taylor; Jianqiong Zhu; Carolyn Hoppe; Gregory J. Kato; Griffin P. Rodgers

The hydroxycarbamide (HC)‐inducible small guanosine triphosphate (GTP)‐binding protein, secretion‐associated and RAS‐related (SAR) protein has recently been shown to play a pivotal role in HBG induction and erythroid maturation by causing cell apoptosis and G1/S‐phase arrest. Our preliminary analysis indicated that HC inducibility is transcriptionally regulated by elements within the SAR1A promoter. This study aimed to assess whether polymorphisms in the SAR1A promoter are associated with differences Hb F levels or HC therapeutic responses among sickle cell disease (SCD) patients. We studied 386 individuals with SCD comprised of 269 adults treated with or without HC and 117 newborns with SCD identified from a newborn screening program. Three previously unknown single nucleotide polymorphisms (SNPs) in the upstream 5′UTR (−809 C>T, −502 G>T and −385 C>A) were significantly associated with the fetal haemoglobin (HbF) response in Hb SS patients treated with HC (P < 0·05). In addition, four SNPs (rs2310991, −809 C>T, −385 C>A and rs4282891) were significantly associated with the change in absolute HbF after 2 years of treatment with HC. These data suggest that variation within SAR1A regulatory elements might contribute to inter‐individual differences in regulation of HbF expression and patient responses to HC in SCD.


Carcinogenesis | 2011

Olfactomedin 4 suppresses prostate cancer cell growth and metastasis via negative interaction with cathepsin D and SDF-1

Ling Chen; Hongzhen Li; Wenli Liu; Jianqiong Zhu; Xiongce Zhao; Elizabeth C. Wright; Liu Cao; Ivan Ding; Griffin P. Rodgers

The human olfactomedin 4 gene (OLFM4) encodes an olfactomedin-related glycoprotein. OLFM4 is normally expressed in a limited number of tissues, including the prostate, but its biological functions in prostate are largely unknown. In this study, we found that OLFM4 messenger RNA was reduced or undetectable in prostate cancer tissues and prostate cancer cell lines. To study the effects of OLFM4 on prostate cancer progression, we transfected PC-3 prostate cancer cells with OLFM4 to establish OLFM4-expressing PC-3 cell clones. The OLFM4-expressing PC-3 cell clones were found to have decreased proliferation and invasiveness compared with vector-transfected control PC-3 cells in vitro. In addition, nude mice injected with OLFM4-expressing PC-3 cells demonstrated reduced tumor growth and bone invasion and metastasis compared with mice injected with vector-transfected control cells. Mechanistic studies revealed that OLFM4 may exhibit its anticancer effects through regulating cell autophagy by targeting cathepsin D, as OLFM4 reduced cathepsin D protein levels and enzymatic activity and attenuated cathepsin D-induced cancer cell proliferation. In addition, overexpression of OLFM4 abrogated stromal cell derived factor-1 (SDF-1)-induced PC-3 cell invasiveness in a Matrigel invasion assay, partially through blocking SDF-1-mediated AKT phosphorylation. Coimmunoprecipitation and immunofluorescence staining studies in OLFM4-expressing PC-3 cells demonstrated a direct interaction between OLFM4 and cathepsin D or SDF-1. Taken together, these results suggest that OLFM4 negatively interacts with cathepsin D and SDF-1 and inhibits prostate cancer growth and bone metastasis.


Journal of Leukocyte Biology | 2011

Glia maturation factor-γ mediates neutrophil chemotaxis

Wulin Aerbajinai; Lunhua Liu; Kyung Chin; Jianqiong Zhu; Carole A. Parent; Griffin P. Rodgers

Chemotaxis is fundamental to the directional migration of neutrophils toward endogenous and exogenous chemoattractants. Recent studies have demonstrated that ADF/cofilin superfamily members play important roles in reorganizing the actin cytoskeleton by disassembling actin filaments. GMFG, a novel ADF/cofilin superfamily protein that is expressed in inflammatory cells, has been implicated in regulating actin reorganization in microendothelial cells, but its function in neutrophils remains unclear. Here, we show that GMFG is an important regulator for cell migration and polarity in neutrophils. Knockdown of endogenous GMFG impaired fMLF‐ and IL‐8 (CXCL8)‐induced chemotaxis in dHL‐60 cells. GMFG knockdown attenuated the formation of lamellipodia at the leading edge of cells exposed to fMLF or CXCL8, as well as the phosphorylation of p38 and PAK1/2 in response to fMLF or CXCL8. Live cell imaging revealed that GMFG was recruited to the leading edge of cells in response to fMLF, as well as CXCL8. Overexpression of GMFG enhanced phosphorylation of p38 but not of PAK1/2 in dHL‐60 cells. In addition, we found that GMFG is associated with WAVE2. Taken together, our findings suggest that GMFG is a novel factor in regulating neutrophil chemotaxis by modulating actin cytoskeleton reorganization.


Blood | 2013

MASL1 induces erythroid differentiation in human erythropoietin-dependent CD34+ cells through the Raf/MEK/ERK pathway

Chutima Kumkhaek; Wulin Aerbajinai; Wenli Liu; Jianqiong Zhu; Naoya Uchida; Roger Kurlander; Matthew M. Hsieh; John F. Tisdale; Griffin P. Rodgers

Human erythropoiesis is a dynamic and complex multistep process involving differentiation of early erythroid progenitors into enucleated RBCs. The mechanisms underlying erythropoiesis still remain incompletely understood. We previously demonstrated that erythropoietin-stimulated clone-1, which is selectively expressed in normal human erythroid-lineage cells, shares 99.5% identity with malignant fibrous histiocytoma-amplified sequences with leucine-rich tandem repeats 1 (MASL1). In this study, we hypothesized that the MASL1 gene plays a role in erythroid differentiation, and used a human erythroid cell culture system to explore this concept. MASL1 mRNA and protein expression levels were significantly increased during the erythroid differentiation of CD34(+) cells following erythropoietin (EPO) treatment. Conversely, MASL1 knockdown reduced erythroid differentiation in EPO-treated CD34(+) cells. In addition, MASL1 knockdown interrupted the Raf/MEK/ERK signaling pathway in CD34(+) cells. MASL1 mutant-transfected CD34(+) cells also showed decreased erythroid differentiation. Furthermore, inhibition of the SH3 domain of Son of Sevenless, which is an upstream adapter protein in EPO-induced erythroid differentiation, also reduced MASL1 expression and phosphorylation of Raf/MEK/ERK kinases that consequently reduced erythroid differentiation of EPO-induced CD34(+) cells. Importantly, we also demonstrated that MASL1 interacts physically with Raf1. Taken together, our data provide novel insights into MASL1 regulation of erythropoiesis through the Raf/MEK/ERK pathway.


Blood | 2014

Hydroxyurea-inducible SAR1 gene acts through the Giα/JNK/Jun pathway to regulate γ-globin expression

Jianqiong Zhu; Kyung Chin; Wulin Aerbajinai; Chutima Kumkhaek; Hongzhen Li; Griffin P. Rodgers

Hydroxyurea (HU) is effectively used in the management of β-hemoglobinopathies by augmenting the production of fetal hemoglobin (HbF). However, the molecular mechanisms underlying HU-mediated HbF regulation remain unclear. We previously reported that overexpression of the HU-induced SAR1 gene closely mimics the known effects of HU on K562 and CD34(+) cells, including γ-globin induction and cell-cycle regulation. Here, we show that HU stimulated nuclear factor-κB interaction with its cognate-binding site on the SAR1 promoter to regulate transcriptional expression of SAR1 in K562 and CD34(+) cells. Silencing SAR1 expression not only significantly lowered both basal and HU-elicited HbF production in K562 and CD34(+) cells, but also significantly reduced HU-mediated S-phase cell-cycle arrest and apoptosis in K562 cells. Inhibition of c-Jun N-terminal kinase (JNK)/Jun phosphorylation and silencing of Giα expression in SAR1-transfected K562 and CD34(+) cells reduced both γ-globin expression and HbF level, indicating that activation of Giα/JNK/Jun proteins is required for SAR1-mediated HbF induction. Furthermore, reciprocal coimmunoprecipitation assays revealed an association between forcibly expressed SAR1 and Giα2 or Giα3 proteins in both K562 and nonerythroid cells. These results indicate that HU induces SAR1, which in turn activates γ-globin expression, predominantly through the Giα/JNK/Jun pathway. Our findings identify SAR1 as an alternative therapeutic target for β-globin disorders.


American Journal of Pathology | 2013

Deletion of the olfactomedin 4 gene is associated with progression of human prostate cancer

Hongzhen Li; Jaime Rodriguez-Canales; Wenli Liu; Jianqiong Zhu; Jeffrey Hanson; Svetlana Pack; Zhengping Zhuang; Michael R. Emmert-Buck; Griffin P. Rodgers

The olfactomedin 4 (OLFM4) gene is located on chromosome 13q14.3, which frequently is deleted in human prostate cancer. However, direct genetic evidence of OLFM4 gene alteration in human prostate cancer has not yet been obtained. In this study, we investigated the genetics, protein expression, and functions of the OLFM4 gene in human prostate cancer. We found overall 25% deletions within the OLFM4 gene in cancerous epithelial cells compared with adjacent normal epithelial cells that were microdissected from 31 prostate cancer specimens using laser-capture microdissection and genomic DNA sequencing. We found 28% to 45% hemizygous and 15% to 57% homozygous deletions of the OLFM4 gene via fluorescence in situ hybridization analysis from 44 different prostate cancer patient samples. Moreover, homozygous deletion of the OLFM4 gene significantly correlated with advanced prostate cancer. By using immunohistochemical analysis of 162 prostate cancer tissue array samples representing a range of Gleason scores, we found that OLFM4 protein expression correlated inversely with advanced prostate cancer, consistent with the genetic results. We also showed that a truncated mutant of OLFM4 that lacks the olfactomedin domain eliminated suppression of PC-3 prostate cancer cell growth. Together, our findings indicate that OLFM4 is a novel candidate tumor-suppressor gene for chromosome 13q and may shed new light on strategies that could be used for the diagnosis, prognosis, and treatment of prostate cancer patients.


Blood | 2011

Recombinant erythroid Kruppel-like factor fused to GATA1 up-regulates delta- and gamma-globin expression in erythroid cells

Jianqiong Zhu; Kyung Chin; Wulin Aerbajinai; Cecelia D. Trainor; Peter Gao; Griffin P. Rodgers

The β-hemoglobinopathies sickle cell disease and β-thalassemia are among the most common human genetic disorders worldwide. Hemoglobin A2 (HbA2, α₂δ₂) and fetal hemoglobin (HbF, α₂γ₂) both inhibit the polymerization of hemoglobin S, which results in erythrocyte sickling. Expression of erythroid Kruppel-like factor (EKLF) and GATA1 is critical for transitioning hemoglobin from HbF to hemoglobin A (HbA, α₂β₂) and HbA2. The lower levels of δ-globin expression compared with β-globin expression seen in adulthood are likely due to the absence of an EKLF-binding motif in the δ-globin proximal promoter. In an effort to up-regulate δ-globin to increase HbA2 expression, we created a series of EKLF-GATA1 fusion constructs composed of the transactivation domain of EKLF and the DNA-binding domain of GATA1, and then tested their effects on hemoglobin expression. EKLF-GATA1 fusion proteins activated δ-, γ-, and β-globin promoters in K562 cells, and significantly up-regulated δ- and γ-globin RNA transcript and protein expression in K562 and/or CD34(+) cells. The binding of EKLF-GATA1 fusion proteins at the GATA1 consensus site in the δ-globin promoter was confirmed by chromatin immunoprecipitation assay. Our studies demonstrate that EKLF-GATA1 fusion proteins can enhance δ-globin expression through interaction with the δ-globin promoter, and may represent a new genetic therapeutic approach to β-hemoglobinopathies.


Journal of Biological Chemistry | 2016

Glia Maturation Factor-γ Regulates Monocyte Migration through Modulation of β1-Integrin

Wulin Aerbajinai; Lunhua Liu; Jianqiong Zhu; Chutima Kumkhaek; Kyung Chin; Griffin P. Rodgers

Monocyte migration requires the dynamic redistribution of integrins through a regulated endo-exocytosis cycle, but the complex molecular mechanisms underlying this process have not been fully elucidated. Glia maturation factor-γ (GMFG), a novel regulator of the Arp2/3 complex, has been shown to regulate directional migration of neutrophils and T-lymphocytes. In this study, we explored the important role of GMFG in monocyte chemotaxis, adhesion, and β1-integrin turnover. We found that knockdown of GMFG in monocytes resulted in impaired chemotactic migration toward formyl-Met-Leu-Phe (fMLP) and stromal cell-derived factor 1α (SDF-1α) as well as decreased α5β1-integrin-mediated chemoattractant-stimulated adhesion. These GMFG knockdown impaired effects could be reversed by cotransfection of GFP-tagged full-length GMFG. GMFG knockdown cells reduced the cell surface and total protein levels of α5β1-integrin and increased its degradation. Importantly, we demonstrate that GMFG mediates the ubiquitination of β1-integrin through knockdown or overexpression of GMFG. Moreover, GMFG knockdown retarded the efficient recycling of β1-integrin back to the plasma membrane following normal endocytosis of α5β1-integrin, suggesting that the involvement of GMFG in maintaining α5β1-integrin stability may occur in part by preventing ubiquitin-mediated degradation and promoting β1-integrin recycling. Furthermore, we observed that GMFG interacted with syntaxin 4 (STX4) and syntaxin-binding protein 4 (STXBP4); however, only knockdown of STXBP4, but not STX4, reduced monocyte migration and decreased β1-integrin cell surface expression. Knockdown of STXBP4 also substantially inhibited β1-integrin recycling in human monocytes. These results indicate that the effects of GMFG on monocyte migration and adhesion probably occur through preventing ubiquitin-mediated proteasome degradation of α5β1-integrin and facilitating effective β1-integrin recycling back to the plasma membrane.

Collaboration


Dive into the Jianqiong Zhu's collaboration.

Top Co-Authors

Avatar

Griffin P. Rodgers

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wenli Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wulin Aerbajinai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kyung Chin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hongzhen Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chutima Kumkhaek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jaime Rodriguez-Canales

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Chen

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge