Jianquan Hong
Fudan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianquan Hong.
Chemistry: A European Journal | 2011
Jianquan Hong; Lixin Zhang; Xiaying Yu; Meng Li; Zhengxing Zhang; Pengzhi Zheng; Masayoshi Nishiura; Zhaomin Hou; Xigeng Zhou
Unsolvated, trinuclear, homometallic, rare-earth-metal multimethyl methylidene complexes [{(NCN)Ln(μ(2)-CH(3))}(3)(μ(3)-CH(3))(μ(3)-CH(2))] (NCN = L = [PhC{NC(6)H(4)(iPr-2,6)(2)}(2)](-); Ln = Sc (2a), Lu (2b)) have been synthesized by treatment of [(L)Ln{CH(2)C(6)H(4)N(CH(3))(2)-o}(2)] (Ln = Sc (1a), Lu (1b)) with two equivalents of AlMe(3) in toluene at ambient temperature in good yields. Treatment of 1 with three equivalents of AlMe(3) gives the heterometallic trinuclear complexes [(L)Ln(AlMe(4))(2)] (Ln = Sc (3a), Lu (3b)) in good yields. Interestingly, 2 can also be generated by recrystallization of 3 in THF/toluene, thereby indicating that the THF molecule can also induce C-H bond activation of 2. Reaction of 2 with one equivalent of ketones affords the trinuclear homometallic oxo-trimethyl complexes [{(L)Ln(μ(2) -CH(3))}(3) (μ(3)-CH(3))(μ(3)-O)] (Ln = Sc(4a), Lu(4b)) in high yields. Complex 4b reacts with one equivalent of cyclohexanone to give the methyl abstraction product [{(L)Lu(μ(2) -CH(3) )}(3) (μ(3) -OC(6)H(9))(μ(3)-O)] (5b), whereas reaction of 4b with acetophenone forms the insertion product [{(L)Lu(μ(2)-CH(3))}(3){μ(3)-OCPh(CH(3))(2)}(μ(3)-O)] (6b). Complex 4a is inert to ketone under the same conditions. All these new complexes have been characterized by elemental analysis, NMR spectroscopy, and confirmed by X-ray diffraction determination.
Angewandte Chemie | 2014
Kai Wang; Gen Luo; Jianquan Hong; Xigeng Zhou; Linhong Weng; Yi Luo; Lixin Zhang
Two new trinuclear μ3 -bridged rare-earth metal phosphinidene complexes, [{L(Ln)(μ-Me)}3 (μ3 -Me)(μ3 -PPh)] (L=[PhC(NC6 H4 iPr2 -2,6)2 ](-) , Ln=Y (2 a), Lu (2 b)), were synthesized through methane elimination of the corresponding carbene precursors with phenylphosphine. Heating a toluene solution of 2 at 120 °C leads to an unprecedented ortho CH bond activation of the PhP ligand to form the bridged phosphinidene/phenyl complexes. Reactions of 2 with ketones, thione, or isothiocyanate show clear phospha-Wittig chemistry, giving the corresponding organic phosphinidenation products and oxide (sulfide) complexes. Reaction of 2 with CS2 leads to the formation of novel trinuclear rare-earth metal thione dianion clusters, for which a possible pathway was determined by DFT calculation.
Dalton Transactions | 2013
Meng Li; Jianquan Hong; Zhenxia Chen; Xigeng Zhou; Lixin Zhang
A series of phenylenediamidinate rare earth metal complexes 1,4-C6H4[C(NR)2Ln(o-CH2C6H4NMe2)2]2 (R = 2,6-(i)Pr2-C6H3, Ln = Y (2a), Lu (2b), Sc (2c)) were synthesized by deprotonation of 1,4-C6H4[C(NR)(NHR)]2 (1) with two equivalents of n-BuLi followed by reacting with two equivalents of anhydrous LnCl3 and subsequently four equivalents of Li(o-CH2C6H4NMe2), or by protolysis of [Ln(o-CH2C6H4NMe2)3] with 0.5 equivalent of 1 in THF or toluene. Treatment of complexes 2a and 2b with four equivalents of phenyl isocyanate and phenyl isothiocyanate gave the corresponding insertion products 1,4-C6H4[C(NR)2Ln{OC(CH2C6H4NMe2-o)NPh}2(THF)]2 (Ln = Y (3a), Lu (3b)) and 1,4-C6H4[C(NR)2Ln{SC(CH2C6H4NMe2-o)NPh}2]2 (Ln = Y (4a), Lu (4b)), respectively. The structures of 1, 3b, and 4a were established by X-ray diffraction studies. Complexes 2 show high activity for rac-lactide and ε-caprolactone polymerization; for the former a synergistic effect between two metal centers is observed.
Journal of the American Chemical Society | 2018
Haiwen Tian; Jianquan Hong; Kai Wang; Iker Del Rosal; Laurent Maron; Xigeng Zhou; Lixin Zhang
Reactions of trinuclear rare-earth metal complexes bearing functionalized phosphinidene ligand [L3Ln3(μ2-Me)2(μ3-Me)(μ3-η1:η2:η2-PC6H4-o)] (L = [PhC(NC6H4iPr2-2,6)2]-, Ln = Y (1a), Lu (1b)) with phenylacetylene, CO2, diisopropyl carbodiimide, isocyanide, or PhSSPh lead to the formation of a series of phosphorus-containing products. The reaction of 1 with CS2 yields two novel P-methyl-phosphindole-2,3-dithiolate dianion complexes, revealing an unusual tandem desulfurization/coupling/cyclization reaction mode of CS2. A possible reaction pathway was determined by density functional theory calculations. This emphasizes the key role of the reduction power of the formal P2- part of the phosphinidene in the C-S bond cleavage.
Organometallics | 2013
Jianquan Hong; Lixin Zhang; Kai Wang; Zhenxia Chen; Limin Wu; Xigeng Zhou
Chemistry: A European Journal | 2013
Jianquan Hong; Lixin Zhang; Kai Wang; Yin Zhang; Linhong Weng; Xigeng Zhou
Tetrahedron | 2012
Zhen Li; Jianquan Hong; Linhong Weng; Xigeng Zhou
Organometallics | 2010
Pengzhi Zheng; Jianquan Hong; Ruiting Liu; Zhengxing Zhang; Zhen Pang; Linhong Weng; Xigeng Zhou
Tetrahedron | 2012
Xiuli Bu; Longcheng Hong; Ruiting Liu; Jianquan Hong; Zhengxing Zhang; Xigeng Zhou
Organometallics | 2014
Fangjun Zhang; Jie Zhang; Yin Zhang; Jianquan Hong; Xigeng Zhou