Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianquan Luo is active.

Publication


Featured researches published by Jianquan Luo.


Bioresource Technology | 2011

A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater.

Jianquan Luo; Luhui Ding; Benkun Qi; Michel Y. Jaffrin; Yinhua Wan

A two-stage ultrafiltration and nanofiltration (UF/NF) process for the treatment of model dairy wastewater was investigated to recycle nutrients and water from the wastewater. Ultracel PLGC and NF270 membranes were found to be the most suitable for this purpose. In the first stage, protein and lipid were concentrated by the Ultracel PLGC UF membrane and could be used for algae cultivation to produce biodiesel and biofuel, and the permeate from UF was concentrated by the NF270 membrane in the second stage to obtain lactose in retentate and reusable water in permeate, while the NF retentate could be recycled for anaerobic digestion to produce biogas. With this approach, most of dairy wastewater could be recycled to produce reusable water and substrates for bioenergy production. Compared with the single NF process, this two-stage UF/NF process had a higher efficiency and less membrane fouling.


Bioresource Technology | 2011

Separation of furfural from monosaccharides by nanofiltration.

Benkun Qi; Jianquan Luo; Xiangrong Chen; Xiaofeng Hang; Yinhua Wan

Furfural, found in the lignocellulosic prehydrolyzates at high concentration, is a strong inhibitor of growth and ethanol fermentation of Saccharomyces cerevisiae. Removal of furfural and concentration of monosaccharides were investigated by using two commercial nanofiltraton (NF) membranes with synthetic glucose-xylose-furfural solution as model. The effects of main operating parameters such as feed pH, permeation flux, temperature and feed concentration on the rejections of the three solutes, were studied. Results showed that rejections of the three solutes decreased with increasing feed pH and temperature, and increased with increasing permeation flux for both membranes. The concentrations of the three solutes had interaction effect on the rejection of furfural by NF90 membrane and rejections of the three solutes by NF270 membrane. Furthermore, the effects of two filtration modes, concentration and diafiltration, on the separation of furfural from monosaccharides were also investigated. With the two commercial NF membranes, concentration and purification of monosaccharides in the model solution can be accomplished.


Bioresource Technology | 2014

An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22.

Yuming Zhang; Xiangrong Chen; Jianquan Luo; Benkun Qi; Yinhua Wan

A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strains promising features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid-liquid separation and detoxification were avoided. Using this process, 46.12 g LA could be produced from 100g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose.


Bioresource Technology | 2012

Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw

Benkun Qi; Jianquan Luo; Guoqiang Chen; Xiangrong Chen; Yinhua Wan

Application of combined ultrafiltration (UF) and nanofiltration (NF) was examined to recycle cellulase and concentrate glucose present in lignocellulosic hydrolyzate. With PES10 membrane operated at 25.6 l/m(2) h, 73.9% of cellulase protein present in the hydrolyzate suspension could be recovered while allowing free transmission of glucose. The permeate obtained from UF was then concentrated by NF. With NF270 membrane operated at 13.3 l/m(2) h, the glucose concentration in the ultrafiltered hydrolyzate increased from 30.2 to 110.2 g/l. Recycling cellulase by UF could reduce the hydrolysis cost of lignocellulosic feedstock, while concentrating glucose by NF could improve the fermentation efficiency of lignocellulosic hydrolyzate and lower the separation and purification cost of fermentative product. Therefore, the use of UF and NF for treating lignocellulosic hydrolyzate could be a promising approach in fermentative production of bioproducts and biofuels using lignocellulosic feedstock as substrate.


Bioresource Technology | 2014

Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions

Yuming Zhang; Xiangrong Chen; Benkun Qi; Jianquan Luo; Fei Shen; Yi Su; Rashid Khan; Yinhua Wan

Bacillus coagulans IPE22 was used to produce lactic acid (LA) from mixed sugar and wheat straw hydrolysates, respectively. All fermentations were conducted under non-sterilized conditions and sodium hydroxide was used as neutralizing agent to avoid the production of insoluble CaSO4. In order to eliminate the sequential utilization of mixed sugar and feedback inhibition during batch fermentation, membrane integrated repeated batch fermentation (MIRB) was used to improve LA productivity. With MIRB, a high cell density was obtained and the simultaneous fermentation of glucose, xylose and arabinose was successfully realized. The separation of LA from broth by membrane in batch fermentation also decreased feedback inhibition. MIRB was carried out using wheat straw hydrolysates (29.72 g/L glucose, 24.69 g/L xylose and 5.14 g/L arabinose) as carbon source, LA productivity was increased significantly from 1.01 g/L/h (batch 1) to 2.35 g/L/h (batch 6) by the repeated batch fermentation.


Bioresource Technology | 2014

Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process

Jing Li; Xiangrong Chen; Benkun Qi; Jianquan Luo; Yuming Zhang; Yi Su; Yinhua Wan

Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production.


New Biotechnology | 2015

Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol

Jianquan Luo; Anne S. Meyer; Ramona Valentina Mateiu; Manuel Pinelo

Facile co-immobilization of enzymes is highly desirable for bioconversion methods involving multi-enzymatic cascade reactions. Here we show for the first time that three enzymes can be immobilized in flat-sheet polymeric membranes simultaneously or separately by simple pressure-driven filtration (i.e. by directing membrane fouling formation), without any addition of organic solvent. Such co-immobilization and sequential immobilization systems were examined for the production of methanol from CO2 with formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH). Enzyme activity was fully retained by this non-covalent immobilization strategy. The two immobilization systems had similar catalytic efficiencies because the second reaction (formic acid→formaldehyde) catalyzed by FaldDH was found to be the cascade bottleneck (a threshold substrate concentration was required). Moreover, the trade-off between the mitigation of product inhibition and low substrate concentration for the adjacent enzymes probably made the co-immobilization meaningless. Thus, sequential immobilization could be used for multi-enzymatic cascade reactions, as it allowed the operational conditions for each single step to be optimized, not only during the enzyme immobilization but also during the reaction process, and the pressure-driven mass transfer (flow-through mode) could overcome the diffusion resistance between enzymes. This study not only offers a green and facile immobilization method for multi-enzymatic cascade systems, but also reveals the reaction bottleneck and provides possible solutions for the bioconversion of CO2 to methanol.


Bioresource Technology | 2013

Fouling-induced enzyme immobilization for membrane reactors

Jianquan Luo; Anne S. Meyer; Gunnar Eigil Jonsson; Manuel Pinelo

A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode) and support layer facing feed (reverse mode), were used to immobilize alcohol dehydrogenase (ADH, EC 1.1.1.1) and glutamate dehydrogenase (GDH, EC 1.4.1.3), respectively. The nature of the fouling in each mode was determined by filtration fouling models. The permeate flux was larger in the normal mode, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane support improved the enzyme reusability (especially for ADH), and reduced the product inhibition (especially for GDH).


Bioresource Technology | 2016

Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis

Yun Li; Benkun Qi; Jianquan Luo; Yinhua Wan

This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins.


ACS Applied Materials & Interfaces | 2014

Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating

Jianquan Luo; Anne S. Meyer; Ramona Valentina Mateiu; Dayanand Kalyani; Manuel Pinelo

High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer. The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC10 kDa membrane with sponge-like sublayer to immobilize laccase with dopamine coating, the trade-off between permeability and enzyme loading was broken, and enzyme loading reached 44.5% without any permeability loss. After 85 days of storage and reuse 14 times, more than 80% of the immobilized laccase activity was retained for the membrane with a dopamine coating, while the relative activity was less than 40% without the coating. The resistance to high temperature and acidic/alkaline pH was also improved by the dopamine coating for the immobilized laccase. Moreover, this biocatalytic membrane could resist mild hydrodynamic cleaning (e.g., back-flushing), but the catalytic ability was reduced by chemical cleaning at extreme pH (e.g., 1.5 and 11.5). Since the immobilized enzyme is not directly facing the bulk of EMRs and the substrate can be specifically selected by the separation skin layer, this biocatalytic membrane is promising for cascade catalytic reactions.

Collaboration


Dive into the Jianquan Luo's collaboration.

Top Co-Authors

Avatar

Yinhua Wan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangrong Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Benkun Qi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weifeng Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Su

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Manuel Pinelo

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Luhui Ding

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anne S. Meyer

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Hang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Shen

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge