Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianxian Sun is active.

Publication


Featured researches published by Jianxian Sun.


Environmental Science & Technology | 2014

Isomer-Specific Accumulation of Perfluorooctanesulfonate from (N‑Ethyl perfluorooctanesulfonamido)ethanol-based Phosphate Diester in Japanese Medaka (Oryzias latipes)

Hui Peng; Shiyi Zhang; Jianxian Sun; Zhong Zhang; John P. Giesy; Jianying Hu

While (N-ethyl perfluorooctanesulfonamido)ethanol (FOSE) -based phosphate diester (diSPAP) has been proposed as a candidate precursor of perfluorooctanesulfonate (PFOS), its potential biotransformation to PFOS has not been verified. Metabolism of diSPAP was investigated in Japanese medaka ( Oryzias latipes ) after exposure in water for 10 days, followed by 10 days of depuration. Branched isomers of diSPAP (B-diSPAP) were preferentially enriched in medaka exposed to diSPAP, with the proportion of branched isomers (BF) ranging from 0.56 to 0.80, which was significantly greater than that in the water to which the medaka were exposed (0.36) (p < 0.001). This enrichment was due primarily to preferential uptake of B-diSPAP. PFOS together with perfluorooctanesulfonamide (PFOSA), N-ethyl perfluorooctanesulfonamide (NEtFOSA), 2-(perfluorooctanesulfonamido)acetic acid (FOSAA), NEtFOSAA, FOSE, and NEtFOSE were detected in medaka exposed to diSPAP, which indicated the potential for biotransformation of diSPAP to PFOS via multiple intermediates. Due to preferential metabolism of branched isomers, FOSAA and PFOSA exhibited greater BF values (>0.5) than those of NEtFOSA, NEtFOSAA, and NEtFOSE (<0.2). Such preferential metabolism of branched isomers along the primary pathway of metabolism and preferential accumulation of B-diSPAP led to enrichment of branched PFOS (B-PFOS) in medaka. Enrichment of B-PFOS was greater for 3-, 4-, and 5-perfluoromethyl PFOS (P3MPFOS, P4MPFOS, and P5MPFOS), for which values of BF were 0.58 ± 0.07, 0.62 ± 0.06, and 0.61 ± 0.05 (day 6), respectively; these values are 5.8-, 7.8-, and 6.4-fold greater than those of technical PFOS. This work provides evidence on the isomer-specific accumulation of PFOS from diSPAP and will be helpful to track indirect sources of PFOS in the future.


Analytical Chemistry | 2015

Untargeted Identification of Organo-Bromine Compounds in Lake Sediments by Ultrahigh-Resolution Mass Spectrometry with the Data-Independent Precursor Isolation and Characteristic Fragment Method

Hui Peng; Chunli Chen; David M.V. Saunders; Jianxian Sun; Song Tang; Garry Codling; Markus Hecker; Steve Wiseman; Paul D. Jones; An Li; Karl J. Rockne; John P. Giesy

While previous studies have found that unknown natural and synthetic organo-bromine compounds (NSOBCs) contributed more than 99% of the total organic bromine (Br) in the environment, there was no efficient method for untargeted screening to identify NSOBCs in environmental matrixes. A novel untargeted method for identifying NSOBCs, based on ultrahigh-resolution mass spectrometry (UHRMS) with the Q Exactive instrument was developed. This method included a data-independent precursor isolation and characteristic fragment (DIPIC-Frag) procedure to identify NSOBCs. A total of 180 successive 5-m/z-wide windows were used to isolate precursor ions. This resulted in a sufficient dynamic range and specificity to identify peaks of Br fragment ions for analysis. A total of 2520 peaks of NSOBC compounds containing Br were observed in sediments from Lake Michigan, United States. A new chemometric strategy which combined chromatographic profiles, isotopic peaks, precursor isolation window information, and intensities was used to identify precursor ions and chemical formulas for detecting NSOBCs. Precursor ions for 2163 of the 2520 NSOBCs peaks (86%) were identified, and chemical formulas for 2071 NSOBCs peaks (82%) were determined. After exclusion of isotopic peaks, 1593 unique NSOBCs were identified and chemical formulas derived for each. Most of the compounds identified had not been reported previously and had intensities which were 100- to 1000-fold greater than the congeners of polybrominated diphenyl ethers (PBDEs). In extracts of sediments, these compounds exhibited variations in intensities (<10(3) to ∼10(8)), m/z values (170.9438-997.5217), retention times on a C18 column (1.0-29.3 min), and the number of Br atoms (1-8). Generally, compounds with greater m/z values had longer retention times and greater numbers of Br atoms. Three compounds were used in a proof-of-concept experiment to demonstrate that structures of some of the screened NSOBCs could be further predicted by combining searching of database libraries and high-resolution MS(2) spectra.


Environmental Science & Technology | 2016

Untargeted Screening and Distribution of Organo-Bromine Compounds in Sediments of Lake Michigan

Hui Peng; Chunli Chen; Jenna Cantin; David M.V. Saunders; Jianxian Sun; Song Tang; Garry Codling; Markus Hecker; Steve Wiseman; Paul D. Jones; An Li; Karl J. Rockne; Neil C. Sturchio; John P. Giesy

Previously unreported natural and synthetic organo-bromine compounds (NSOBCs) have been found to contribute more than 99% of total organic bromine (TOB) in environmental matrices. We recently developed a novel untargeted method (data-independent precursor isolation and characteristic fragment, DIPIC-Frag) and identified ∼2000 NSOBCs in two sediments from Lake Michigan. In this study, this method was used to investigate the distributions of these NSOBCs in 23 surficial samples and 24 segments of a sediment core from Lake Michigan. NSOBCs were detected in all 23 surficial samples and exhibited 10- to 100-fold variations in peak abundance among locations. The pattern of distributions of NSOBCs was correlated with depth of the water column (r(2) = 0.61, p < 0.001). Hierarchical cluster analysis showed that sediments in close proximity exhibited similar profiles of NSOBCs. Distributions of NSOBCs in 24 segments of a sediment core dated from 1766 to 2008 were investigated, and samples from similar depths exhibited similar profiles of NSOBCs. NSOBCs were grouped into four clusters (soft-cluster analysis) with different temporal trends of abundances. 515 and 768 of the NSOBCs were grouped into cluster 1 and cluster 3 with increasing temporal trends, especially since 1950, indicating that abundances of these compounds might have been affected by human activities.


Environmental Science & Technology | 2015

Detection, Identification, and Quantification of Hydroxylated Bis(2-ethylhexyl)-Tetrabromophthalate Isomers in House Dust

Hui Peng; David M.V. Saunders; Jianxian Sun; Garry Codling; Steve Wiseman; Paul D. Jones; John P. Giesy

Ultra-High Resolution LC/mass spectrometry (LC-UHRMS; Thermo Fisher Q-Exactive) was used to identify two novel isomers of hydroxylated bis(2-ethylhexyl)-tetrabromophthalate (OH-TBPH) which were unexpectedly observed in a commercial standard of TBPH. By combining ultra-high resolution (UHR) mass spectra (MS(1)), mass errors to theoretical [TBPH-Br+O](-) were 2.1 and 1.0 ppm for the two isomers, UHR-MS(2) spectra and NMR analysis; the structures of the two compounds were identified as hydroxylated TBPH with a hydroxyl group on the aromatic ring. Relatively great proportions of the two isomers of OH-TBPH were detected in two technical products, Firemaster 550 (FM-550; 0.1% and 6.2%, respectively) and Firemaster BZ 54 (BZ-54; 0.1% and 7.9%), compared to a commercial standard (0.4% and 0.9%). To simultaneously analyze OH-TBPH isomers and TBPH in samples of dust, a method based on LC-UHRMS was developed to quantify the two compounds, using negative and positive ion modes, respectively. The instrumental limit of detection for TBPH was 0.01 μg/L, which was 200-300 times better than traditional methods (2.5 μg/L) based on gas chromatography-mass spectrometry. The analytical method combined with a Florisil cleanup was successfully applied to analyze TBPH and OH-TBPH in 23 indoor dust samples from Saskatoon, Saskatchewan, Canada. Two OH-TBPH isomers, OH-TBPH1 and OH-TBPH2, were detected in 52% and 91% of dust samples, respectively. Concentrations of OH-TBPH2 (0.35 ± 1.0 ng/g) were 10-fold greater than those of OH-TBPH1 (0.04 ± 0.88 ng/g) in dust, which was similar to profiles in FM-550 and BZ-54. TBPH was also detected in 100% of dust samples with a mean concentration of 733 ± 0.87 ng/g. A significant (p < 0.001) log-linear relationship was observed between TBPH and OH-TBPH isomers, further supporting the hypothesis of a common source of emission. Relatively small proportions of OH-TBPH isomers were detected in dust (0.01% ± 0.67 OH-TBPH1 and 0.1% ± 0.60 OH-TBPH2), which were significantly less than those in technical products (p < 0.001). This result indicated different environmental behaviors of OH-TBPH and TBPH. Detection of isomers of OH-TBPH is important, since compounds with phenolic groups have often shown relatively greater toxicities than nonhydroxylated analogues. Further study is warranted to clarify the environmental behaviors and potential toxicities of OH-TBPH isomers.


Environmental Science & Technology | 2016

Untargeted Screening and Distribution of Organo-Iodine Compounds in Sediments from Lake Michigan and the Arctic Ocean

Hui Peng; Chunli Chen; Jenna Cantin; David M.V. Saunders; Jianxian Sun; Song Tang; Garry Codling; Markus Hecker; Steve Wiseman; Paul D. Jones; An Li; Karl J. Rockne; Neil C. Sturchio; Minghong Cai; John P. Giesy

The majority of halogenated organic compounds present in the environment remain unidentified. To address this data gap, we recently developed an untargeted method (data-independent precursor isolation and characteristic fragment; DIPIC-Frag) for identification of unknown organo-bromine compounds. In this study, the method was adapted to enable untargeted screening of natural and synthetic organo-iodine compounds (NSOICs) in sediments. A total of 4,238 NSOIC peaks were detected in sediments from Lake Michigan. Precursor ions and formulas were determined for 2,991 (71%) of the NSOIC peaks. These compounds exhibited variations in abundances (<10(3) to ∼10(7)), m/z values (206.9304-996.9474), retention times (1.0-29.7 min), and number of iodine atoms (1-4). Hierarchical cluster analysis showed that sediments in closer proximity exhibited similar profiles of NSOICs. NSOICs were screened in 10 samples of sediment from the Arctic Ocean to compare the profiles of NSOICs between freshwater and marine sediments. A total of 3,168 NSOIC peaks were detected, and profiles of NSOICs in marine sediments were clearly distinct from Lake Michigan. The coexistence of brominated and iodinated analogues indicated that some NSOICs are of natural origin. Different ratios of abundances of iodinated compounds to brominated analogues were observed and proposed as a marker to distinguish sources of NSOICs.


Environmental Science & Technology | 2016

Peroxisome Proliferator-Activated Receptor γ is a Sensitive Target for Oil Sands Process-Affected Water: Effects on Adipogenesis and Identification of Ligands

Hui Peng; Jianxian Sun; Hattan A. Alharbi; Paul D. Jones; John P. Giesy; Steve Wiseman

Identification of toxic components of complex mixtures is a challenge. Here, oil sands process-affected water (OSPW) was used as a case study to identify those toxic components with a known protein target. Organic chemicals in OSPW exhibited dose-dependent activation of peroxisome proliferator-activated receptor γ (PPARγ) at concentrations less than those currently in the environment (0.025× equivalent of full-strength OSPW), by use of a luciferase reporter gene assay. Activation of PPARγ-mediated adipogenesis by OSPW was confirmed in 3T3L1 preadipocytes, as evidenced by accumulation of lipids and up-regulation of AP2, LPL, and PPARγ gene expression after exposure to polar fractions of OSPW. Unexpectedly, the nonpolar fractions of OSPW inhibited differentiation of preadipocytes via activation of the Wnt signaling pathway. Organic chemicals in OSPW that were ligands of PPARγ were identified by use of a pull-down system combined with untargeted chemical analysis (PUCA), with a recombinant PPARγ protein. Thirty ligands of PPARγ were identified by use of the PUCA assay. High resolution MS(1) and MS(2) spectra were combined to predict the formulas or structures of a subset of ligands, and polyoxygenated or heteroatomic chemicals, especially hydroxylated carboxylic/sulfonic acids, were the major ligands of PPARγ.


Environmental Science & Technology | 2016

High Conservation in Transcriptomic and Proteomic Response of White Sturgeon to Equipotent Concentrations of 2,3,7,8-TCDD, PCB 77, and Benzo[a]pyrene

Jon A. Doering; Song Tang; Hui Peng; Bryanna K. Eisner; Jianxian Sun; John P. Giesy; Steve Wiseman; Markus Hecker

Adverse effects associated with exposure to dioxin-like compounds (DLCs) are mediated primarily through activation of the aryl hydrocarbon receptor (AHR). However, little is known about the cascades of events that link activation of the AHR to apical adverse effects. Therefore, this study used high-throughput, next-generation molecular tools to investigate similarities and differences in whole transcriptome and whole proteome responses to equipotent concentrations of three agonists of the AHR, 2,3,7,8-TCDD, PCB 77, and benzo[a]pyrene, in livers of a nonmodel fish, the white sturgeon (Acipenser transmontanus). A total of 926 and 658 unique transcripts were up- and down-regulated, respectively, by one or more of the three chemicals. Of the transcripts shared by responses to all three chemicals, 85% of up-regulated transcripts and 75% of down-regulated transcripts had the same magnitude of response. A total of 290 and 110 unique proteins were up- and down-regulated, respectively, by one or more of the three chemicals. Of the proteins shared by responses to all three chemicals, 70% of up-regulated proteins and 48% of down-regulated proteins had the same magnitude of response. Among treatments there was 68% similarity between the global transcriptome and global proteome. Pathway analysis revealed that perturbed physiological processes were indistinguishable between equipotent concentrations of the three chemicals. The results of this study contribute toward more completely describing adverse outcome pathways associated with activation of the AHR.


Environmental Science & Technology | 2016

Linking Oxidative Stress and Magnitude of Compensatory Responses with Life-Stage Specific Differences in Sensitivity of White Sturgeon (Acipenser transmontanus) to Copper or Cadmium

Song Tang; Jon A. Doering; Jianxian Sun; Shawn C. Beitel; Kamran Shekh; Sarah Patterson; Sarah E. Crawford; John P. Giesy; Steve Wiseman; Markus Hecker

Sensitivity of white sturgeon (Acipenser transmontanus) to copper (Cu) or cadmium (Cd) has been shown to significantly differ as a function of life-stage. This study investigated oxidative stress, metal homeostasis, and associated compensatory responses as potential mechanisms of this sensitivity pattern in three early life-stages. Sturgeon were most sensitive to Cu at 15 days post hatch (dph), which was accompanied by a significant increase in lipid peroxidation (LPO). Genes involved with amelioration of oxidative stress were significantly less inducible at this stage than in older, less sensitive fry. At 48 dph, acute lethality of sturgeon exposed to Cd was greatest and body LPO was significantly induced by 3.5-fold at 5 μg Cd/L. Moreover, there was a small but significant increase in antioxidative responses. At 139 dph, sturgeon were most tolerant to Cu and Cd and accumulation of these metals was least. Also, expression of metallothionein (MT) and apoptotic genes were greatest while expression of metal transporters was reduced and concentration of LPO was not different from controls. Our results suggest that life-stage specific sensitivity of white sturgeon to metals is complex, encompassing differences in the ability to mount compensatory responses important for metal homeostasis and combating oxidative stress and concomitant damages.


Journal of Insect Physiology | 2015

Effects of environmentally-relevant mixtures of four common organophosphorus insecticides on the honey bee (Apis mellifera L.)

Yahya Al Naggar; Steve Wiseman; Jianxian Sun; G. Christopher Cutler; Mourad A. M. Aboul-Soud; Elsaied Naiem; Mohamed Mona; Amal Seif; John P. Giesy

We assessed whether exposure to environmentally-relevant mixtures of four organophosphorus insecticides (OPs) exerted adverse effects on honey bees. Adult and worker bees were orally exposed for five days under laboratory conditions to mixtures of four insecticides, diazinon, malathion, profenofos and chlorpyrifos at two concentrations. Concentration in the mixtures tested were equivalent to the median and 95th centile concentrations of the OPs in honey, as reported in the literature. Effects on survival, behavior, activity of acetylcholinesterase (AChE), and expression of genes important in detoxification of xenobiotics and immune response were examined. Survival of worker bees was not affected by exposure to median or 95th centile concentrations of the OPs. Activity of AChE was significantly greater in worker bees exposed to the 95th centile concentration mixture of OPs compared to the median concentration mixture. Expression of genes involved in detoxification of xenobiotics was not affected by treatment, but the abundance of transcripts of the antimicrobial peptide hymenoptaecin was significantly greater in worker honey bees exposed to the median concentration mixture. Results suggest that short-term exposure to environmentally relevant concentrations of a mixture of OPs do not adversely affect worker honey bees.


Environmental Science & Technology | 2017

Identification of Chemicals that Cause Oxidative Stress in Oil Sands Process-Affected Water

Jianxian Sun; Hui Peng; Hattan A. Alharbi; Paul D. Jones; John P. Giesy; Steve Wiseman

Oil sands process-affected water (OSPW) has been reported to cause oxidative stress in organisms, yet the causative agents remain unknown. In this study, a high-throughput in vitro Nrf2 reporter system was used, to determine chemicals in OSPW that cause oxidative stress. Five fractions, with increasing polarity, of the dissolved organic phase of OSPW were generated by use of solid phase extraction cartridges. The greatest response of Nrf2 was elicited by F2 (2.7 ± 0.1-fold), consistent with greater hydroperoxidation of lipids in embryos of Japanese medaka (Oryzias latipes) exposed to F2. Classic naphthenic acids were mainly eluted in F1, and should not be causative chemicals. When F2 was fractionated into 60 subfractions by use of HPLC, significant activation of Nrf2 was observed in three grouped fractions: F2.8 (1.30 ± 0.01-fold), F2.16 (1.34 ± 0.05-fold), and F2.25 (1.28 ± 0.15-fold). 54 compounds were predicted to be potential chemicals causing Nrf2 response, predominated by SO3+ and O3+ species. By use of high-resolution MS2 spectra, these SO3+ and O3+ species were identified as hydroxylated aldehydes. This study demonstrated that polyoxygenated chemicals, rather than classic NAs, were the major chemicals responsible for oxidative stress in the aqueous phase of OSPW.

Collaboration


Dive into the Jianxian Sun's collaboration.

Top Co-Authors

Avatar

John P. Giesy

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Hui Peng

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Steve Wiseman

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Paul D. Jones

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Hecker

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Song Tang

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Garry Codling

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Jon A. Doering

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Chunli Chen

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge