Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianxin Fu is active.

Publication


Featured researches published by Jianxin Fu.


Journal of Clinical Investigation | 2011

Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice

Jianxin Fu; Bo Wei; Tao Wen; Malin E. V. Johansson; Xiaowei Liu; Emily M. Bradford; Kristina A. Thomsson; Samuel McGee; Lilah Mansour; Maomeng Tong; J. Michael McDaniel; Thomas J. Sferra; Jerrold R. Turner; Hong Chen; Gunnar C. Hansson; Jonathan Braun; Lijun Xia

Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell-specific deficiency of core 1-derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1-derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1-derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase-specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC.


Journal of Clinical Investigation | 2008

Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice

Jianxin Fu; Holger Gerhardt; J. Michael McDaniel; Baoyun Xia; Xiaowei Liu; Lacramioara Ivanciu; Annelii Ny; Karlien Hermans; Robert Silasi-Mansat; Samuel McGee; Emma Nye; Tongzhong Ju; Maria I. Ramirez; Peter Carmeliet; Richard D. Cummings; Florea Lupu; Lijun Xia

Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1-derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn(-/-) mice). EHC T-syn(-/-) mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn(-/-) mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn(-/-) lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn(-/-) defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn(-/-) mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn(-/-) pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression.


Nature | 2013

Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2

Brett H. Herzog; Jianxin Fu; Stephen J Wilson; Paul R. Hess; Aslihan Sen; J. Michael McDaniel; Yanfang Pan; Minjia Sheng; Tadayuki Yago; Robert Silasi-Mansat; Samuel McGee; Frauke May; Bernhard Nieswandt; Andrew J. Morris; Florea Lupu; Shaun R. Coughlin; Rodger P. McEver; Hong Chen; Mark L. Kahn; Lijun Xia

Circulating lymphocytes continuously enter lymph nodes for immune surveillance through specialized blood vessels named high endothelial venules, a process that increases markedly during immune responses. How high endothelial venules (HEVs) permit lymphocyte transmigration while maintaining vascular integrity is unknown. Here we report a role for the transmembrane O-glycoprotein podoplanin (PDPN, also known as gp38 and T1α) in maintaining HEV barrier function. Mice with postnatal deletion of Pdpn lost HEV integrity and exhibited spontaneous bleeding in mucosal lymph nodes, and bleeding in the draining peripheral lymph nodes after immunization. Blocking lymphocyte homing rescued bleeding, indicating that PDPN is required to protect the barrier function of HEVs during lymphocyte trafficking. Further analyses demonstrated that PDPN expressed on fibroblastic reticular cells, which surround HEVs, functions as an activating ligand for platelet C-type lectin-like receptor 2 (CLEC-2, also known as CLEC1B). Mice lacking fibroblastic reticular cell PDPN or platelet CLEC-2 exhibited significantly reduced levels of VE-cadherin (also known as CDH5), which is essential for overall vascular integrity, on HEVs. Infusion of wild-type platelets restored HEV integrity in Clec-2-deficient mice. Activation of CLEC-2 induced release of sphingosine-1-phosphate from platelets, which promoted expression of VE-cadherin on HEVs ex vivo. Furthermore, draining peripheral lymph nodes of immunized mice lacking sphingosine-1-phosphate had impaired HEV integrity similar to Pdpn- and Clec-2-deficient mice. These data demonstrate that local sphingosine-1-phosphate release after PDPN–CLEC-2-mediated platelet activation is critical for HEV integrity during immune responses.


Journal of Clinical Investigation | 2014

Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life

Paul R. Hess; David R. Rawnsley; Zoltán Jakus; Yiqing Yang; Daniel T. Sweet; Jianxin Fu; Brett H. Herzog; MinMin Lu; Bernhard Nieswandt; Guillermo Oliver; Taija Makinen; Lijun Xia; Mark L. Kahn

Mammals transport blood through a high-pressure, closed vascular network and lymph through a low-pressure, open vascular network. These vascular networks connect at the lymphovenous (LV) junction, where lymph drains into blood and an LV valve (LVV) prevents backflow of blood into lymphatic vessels. Here we describe an essential role for platelets in preventing blood from entering the lymphatic system at the LV junction. Loss of CLEC2, a receptor that activates platelets in response to lymphatic endothelial cells, resulted in backfilling of the lymphatic network with blood from the thoracic duct (TD) in both neonatal and mature mice. Fibrin-containing platelet thrombi were observed at the LVV and in the terminal TD in wild-type mice, but not Clec2-deficient mice. Analysis of mice lacking LVVs or lymphatic valves revealed that platelet-mediated thrombus formation limits LV backflow under conditions of impaired valve function. Examination of mice lacking integrin-mediated platelet aggregation indicated that platelet aggregation stabilizes thrombi that form in the lymphatic vascular environment to prevent retrograde blood flow. Collectively, these studies unveil a newly recognized form of hemostasis that functions with the LVV to safeguard the lymphatic vascular network throughout life.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Core 1-derived O-glycans are essential E-selectin ligands on neutrophils

Tadayuki Yago; Jianxin Fu; J. Michael McDaniel; Jonathan J. Miner; Rodger P. McEver; Lijun Xia

Neutrophils roll on E-selectin in inflamed venules through interactions with cell-surface glycoconjugates. The identification of physiologic E-selectin ligands on neutrophils has been elusive. Current evidence suggests that P-selectin glycoprotein ligand-1 (PSGL-1), E-selectin ligand-1 (ESL-1), and CD44 encompass all glycoprotein ligands for E-selectin; that ESL-1 and CD44 use N-glycans to bind to E-selectin; and that neutrophils lacking core 2 O-glycans have partially defective interactions with E-selectin. These data imply that N-glycans on ESL-1 and CD44 and O-glycans on PSGL-1 constitute all E-selectin ligands, with neither glycan subset having a dominant role. The enzyme T-synthase transfers Gal to GalNAcα1-Ser/Thr to form the core 1 structure Galβ1–3GalNAcα1-Ser/Thr, a precursor for core 2 and extended core 1 O-glycans that might serve as selectin ligands. Here, using mice lacking T-synthase in endothelial and hematopoietic cells, we found that E-selectin bound to CD44 and ESL-1 in lysates of T-synthase–deficient neutrophils. However, the cells exhibited markedly impaired rolling on E-selectin in vitro and in vivo, failed to activate β2 integrins while rolling, and did not emigrate into inflamed tissues. These defects were more severe than those of neutrophils lacking PSGL-1, CD44, and the mucin CD43. Our results demonstrate that core 1-derived O-glycans are essential E-selectin ligands; that some of these O-glycans are on protein(s) other than PSGL-1, CD44, and CD43; and that PSGL-1, CD44, and ESL-1 do not constitute all glycoprotein ligands for E-selectin.


Journal of Clinical Investigation | 2015

Lymph flow regulates collecting lymphatic vessel maturation in vivo

Daniel T. Sweet; Juan M. Jiménez; Jeremy Chang; Paul R. Hess; Patricia Mericko-Ishizuka; Jianxin Fu; Lijun Xia; Peter F. Davies; Mark L. Kahn

Fluid shear forces have established roles in blood vascular development and function, but whether such forces similarly influence the low-flow lymphatic system is unknown. It has been difficult to test the contribution of fluid forces in vivo because mechanical or genetic perturbations that alter flow often have direct effects on vessel growth. Here, we investigated the functional role of flow in lymphatic vessel development using mice deficient for the platelet-specific receptor C-type lectin-like receptor 2 (CLEC2) as blood backfills the lymphatic network and blocks lymph flow in these animals. CLEC2-deficient animals exhibited normal growth of the primary mesenteric lymphatic plexus but failed to form valves in these vessels or remodel them into a structured, hierarchical network. Smooth muscle cell coverage (SMC coverage) of CLEC2-deficient lymphatic vessels was both premature and excessive, a phenotype identical to that observed with loss of the lymphatic endothelial transcription factor FOXC2. In vitro evaluation of lymphatic endothelial cells (LECs) revealed that low, reversing shear stress is sufficient to induce expression of genes required for lymphatic valve development and identified GATA2 as an upstream transcriptional regulator of FOXC2 and the lymphatic valve genetic program. These studies reveal that lymph flow initiates and regulates many of the key steps in collecting lymphatic vessel maturation and development.


Gastroenterology | 2016

Defective Intestinal Mucin-Type O-Glycosylation Causes Spontaneous Colitis-Associated Cancer in Mice

Kirk Bergstrom; Xiaowei Liu; Yiming Zhao; Nan Gao; Qian Wu; Kai Song; Yi Cui; Yun Li; J. Michael McDaniel; Samuel McGee; Weichang Chen; Mark M. Huycke; Courtney W. Houchen; Lauren A. Zenewicz; Christopher M. West; Hong Chen; Jonathan Braun; Jianxin Fu; Lijun Xia

BACKGROUND & AIMS Core 1- and core 3-derived mucin-type O-linked oligosaccharides (O-glycans) are major components of the colonic mucus layer. Defective forms of colonic O-glycans, such as the Thomsen-nouveau (Tn) antigen, frequently are observed in patients with ulcerative colitis and colorectal cancer, but it is not clear if they contribute to their pathogenesis. We investigated whether and how impaired O-glycosylation contributes to the development of colitis-associated colorectal cancer using mice lacking intestinal core 1- and core 3-derived O-glycans. METHODS We generated mice that lack core 1- and core 3-derived intestinal O-glycans (DKO mice) and analyzed them, along with mice that singly lack intestinal epithelial core 1 O-glycans (IEC C1galt1(-/-) mice) or core 3 O-glycans (C3Gnt(-/-) mice). Intestinal tissues were collected at different time points and analyzed for levels of mucin and Tn antigen, development of colitis, and tumor formation using imaging, quantitative polymerase chain reaction, immunoblot, and enzyme-linked immunosorbent assay techniques. We also used cellular and genetic approaches, as well as intestinal microbiota depletion, to identify inflammatory mediators and pathways that contribute to disease in DKO and wild-type littermates (controls). RESULTS Intestinal tissues from DKO mice contained higher levels of Tn antigen and had more severe spontaneous chronic colitis than tissues from IEC C1galt1(-/-) mice, whereas spontaneous colitis was absent in C3GnT(-/-) and control mice. IEC C1galt1(-/-) mice and DKO mice developed spontaneous colorectal tumors, although the onset of tumors in the DKO mice occurred earlier (age, 8-9 months) than that in IEC C1galt1(-/-) mice (15 months old). Antibiotic depletion of the microbiota did not cause loss of Tn antigen but did reduce the development of colitis and cancer formation in DKO mice. Colon tissues from DKO mice, but not control mice, contained active forms of caspase 1 and increased caspase 11, which were reduced after antibiotic administration. Supernatants from colon tissues of DKO mice contained increased levels of interleukin-1β and interleukin-18, compared with those from control mice. Disruption of the caspase 1 and caspase 11 genes in DKO mice (DKO/Casp1/11(-/-) mice) decreased the development of colitis and cancer, characterized by reduced colonic thickening, hyperplasia, inflammatory infiltrate, and tumors compared with DKO mice. CONCLUSIONS Impaired expression of O-glycans causes colonic mucus barrier breach and subsequent microbiota-mediated activation of caspase 1-dependent inflammasomes in colonic epithelial cells of mice. These processes could contribute to colitis-associated colon cancer in humans.


Cancer Research | 2013

Lenalidomide Inhibits Lymphangiogenesis in Preclinical Models of Mantle Cell Lymphoma

Kai Song; Brett H. Herzog; Minjia Sheng; Jianxin Fu; J. Michael McDaniel; Jia Ruan; Lijun Xia

Lymphomas originate in and spread primarily along the lymphatic system. However, whether lymphatic vessels contribute to the growth and spreading of lymphomas is largely unclear. Mantle cell lymphoma (MCL) represents an aggressive non-Hodgkins lymphoma. We found that MCL exhibited abundant intratumor lymphatic vessels. Our results demonstrated that the immunomodulatory drug lenalidomide potently inhibited the growth and dissemination of MCL in a xenograft MCL mouse model, at least in part, by inhibiting functional tumor lymphangiogenesis. Significant numbers of tumor-associated macrophages expressing vascular endothelial growth factor-C were found in both human MCL and mouse MCL xenograft samples. Lenalidomide treatment resulted in a significant reduction in the number of MCL-associated macrophages. In addition, in vivo depletion of monocytes/macrophages impaired functional tumor lymphangiogenesis and inhibited MCL growth and dissemination. Taken together, our results indicate that tumor lymphangiogenesis contributes to the progression of MCL and that lenalidomide is effective in decreasing MCL growth and metastasis most likely by inhibiting recruitment of MCL-associated macrophages.


Gut microbes | 2014

Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis

Maria E lisa Perez-Muñoz; Kirk Bergstrom; Vincent Peng; Robert Schmaltz; Roberto Jimenez-Cardona; Nathan L. Marsteller; Sam McGee; Thomas Clavel; Ruth E. Ley; Jianxin Fu; Lijun Xia; Daniel A. Peterson

Under conventional conditions, mice deficient in core 1-derived O-glycans (TM-IEC C1galt1−/−), which have a defective mucus layer, experienced spontaneous inflammation of the colon. Analysis of fecal bacterial populations by pyrosequencing of 16S rRNA gene showed that disease in conventional TM-IEC C1galt1−/− was associated with shifts in the microbiota manifested by increases in Lactobacillus and Clostridium species, and decreases in unclassified Ruminococcaceae and Lachnospiraceae. Under germ-free (GF) conditions, TM-IEC C1galt1−/− presented decreased goblet cells, but did not develop inflammation. Monoassociation of GF TM-IEC C1galt1−/− revealed that bacterial species differ significantly in their ability to induce inflammatory changes. Bacteroides thetaiotaomicron caused inflammation, while Lactobacillus johnsonii (enriched during colitis) did not. These observations demonstrate that not all microbiota shifts that correlate with disease contribute to pathogenesis.


Mucosal Immunology | 2017

Core 1-and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice

Kirk Bergstrom; Jianxin Fu; Malin E. V. Johansson; Xiaowei Liu; N Gao; Q Wu; Jianhua Song; McDaniel Jm; Samuel McGee; W Chen; Jonathan Braun; Gunnar C. Hansson; Lijun Xia

Core 1– and 3–derived mucin-type O-glycans are primary components of the mucus layer in the colon. Reduced mucus thickness and impaired O-glycosylation are observed in human ulcerative colitis. However, how both types of O-glycans maintain mucus barrier function in the colon is unclear. We found that C1galt1 expression, which synthesizes core 1 O-glycans, was detected throughout the colon, whereas C3GnT, which controls core 3 O-glycan formation, was most highly expressed in the proximal colon. Consistent with this, mice lacking intestinal core 1–derived O-glycans (IEC C1galt1−/−) developed spontaneous colitis primarily in the distal colon, whereas mice lacking both intestinal core 1– and 3–derived O-glycans (DKO) developed spontaneous colitis in both the distal and proximal colon. DKO mice showed an early onset and more severe colitis than IEC C1galt1−/− mice. Antibiotic treatment restored the mucus layer and attenuated colitis in DKO mice. Mucins from DKO mice were more susceptible to proteolysis than wild-type mucins. This study indicates that core 1– and 3–derived O-glycans collectively contribute to the mucus barrier by protecting it from bacterial protease degradation and suggests new therapeutic targets to promote mucus barrier function in colitis patients.

Collaboration


Dive into the Jianxin Fu's collaboration.

Top Co-Authors

Avatar

Lijun Xia

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

J. Michael McDaniel

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Samuel McGee

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Brett H. Herzog

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Hong Chen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kirk Bergstrom

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Rodger P. McEver

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Tadayuki Yago

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Kai Song

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Jianhua Song

Oklahoma Medical Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge